NFD: Using Behavior Models to Develop
Cross-Platform Network Functions

Hongyi Huang', Wenfei Wu!, Yongchao He', Bangwen Deng', Ying Zhang?,

Yonggiang Xiong?, Guo Chen?,

Yong Cui', and Peng Cheng?

1 Tsinghua University, 2 Microsoft Research, 3 Facebook, 4 Hunan University

Abstract—NFV ecosystem is flourishing and more and more NF
platforms appear, but this makes NF vendors difficult to deliver
NFs rapidly to diverse platforms. We propose an NF development
framework named NFD for cross-platform NF development.
NFD’s main idea is to decouple the functional logic from the
platform logic —it provides a platform-independent language to
program NFs’ behavior models, and a compiler with interfaces
to develop platform-specific plugins. By enabling a plugin on the
compiler, various NF models would be compiled to executables
integrated with the target platform. We prototype NFD, build
14 NFs, and support 6 platforms (standard Linux, OpenNetVM,
GPU, SGX, DPDK, OpenNF). Our evaluation shows that NFD
can save development workload for cross-platform NFs and
output valid and performant NFs.

I. INTRODUCTION

The ecosystem of network function virtualization (NFV) has
gradually matured over the past few years. Network clients
propose the requirement of in-network functionalities; network
operators would adopt one of the various NF platforms as the
runtime environment or management framework for NFs, e.g.,
Azure VFP [1], OpenNF [2], E2 [3], LeanNFV [4], AWS Nitro
[5], etc.; NF vendors' would provide various software NFs;
and integration of the platform and NFs would be established
to serve network clients (e.g., cloud tenants or enterprise
network users).

However, the diversity in NF platforms and NF logic and the
long business cycle of NF software development could slow
down the NF developers to deliver NFs. On the one hand,
there is a huge number of combinations of environments and
NFs — an increasing number of NF platforms are proposed for
different reasons, e.g., acceleration (DPDK, SR-IOV, AWS Ni-
tro [5]), security (SGX), scalability (Azure VFP [1], OpenNF
[2]), and manageability (E2 [3], LeanNFV [4]); and NFs can
be highly customized for different network users, e.g., load
balancer with blacklisting, or unbalanced load balancer for
heterogeneous backends.

On the other hand, developing or porting an NF to a specific
platform involves a non-trivial business cycle — developers
need to spend efforts understanding NF logic, decoupling
and rewriting the environmental logic, developing and testing.
Such a contradiction would potentially slow down NF vendors

Wenfei Wu is the corresponding author.

They can be the NF developers in Azure or AWS [1], or traditional device
vendors who provide software version, e.g., Palo Alto Networks or Cisco or
Juniper, or new NFV startups [4].

to deliver NFs and become an obstacle to the prosperity of the

NFV technology.

In this paper, we would explore the possibility to build an
NF development framework which can rapidly build NFs for
diverse platforms. We make an empirical study on several
existing NF platforms, and categorize them to two classes —
execution environments and management platforms. The first
class requires NFs to be developed with a certain piece of logic
to be explicitly declared (i.e., programming abstractions), and
the second class needs both declared a piece of logic and
instrument logic to the NF program structure.

Therefore, we design an NF development framework named
NFD. NFD consists of a domain-specific language (DSL) and
a compiler. The NFD language is platform-independent and
has several built-in programming abstractions (we summarize
them from existing frameworks and also add our own abstrac-
tions). The compiler backend has interfaces to operate on the
NF program syntax tree so that programmer can instrument the
program structure. Such a design decouples NF’s functional
logic and environmental logic — developing m NF models
and n platform plugins could achieve mn NF implementations
(m+n < mn when m > 1 and n > 1).

Scope. NFD is constructed based on the empirical study
of existing platforms. It can support these existing platforms,
but has no guarantee to support possible platforms in the
future. But as long as the platform has the same development
requirements to NFs — specific programming abstractions and
certain program structures — new platforms can be integrated
to NFD following the same methodology in this paper.

We prototype NFD, and develop 14 NFs on 6 platforms. The
platforms are standard Linux, DPDK, GPU, SGX, OpenNF,
and OpenNetVM. The evaluation shows that NFD can be
used to develop NFs with environmental adaptation, correct
logic, and satisfactory performance. In this paper, we make
the following contributions.

o Design and prototype NFD, the first solution for cross-
platform NF development. NFD leverages domain-specific
language and compiler technologies to decouple packet
processing logic and environment adaption logic, which can
significantly reduce NF delivery cycle.

o Implement and contribute 14 NFs on 6 platforms as well
as a commodity equivalent complex NF to the community.
These NFs are validated to have correct functional logic and
satisfactory performance compared with commodity NFs,
and the development process shows the NFD can reduce

development workload.

II. PROBLEM ANALYSIS

We elaborate the empirical study on existing NF platforms
and the intuition from them. And then we give the overview
of the development framework.

A. Study of NF Platforms

NF platforms fall into two categories. Some of them focus
on improve NF performance or security in the data plane, and
the others focus on the interaction of NFs with the control
plane.

1) Execution Environments: A class of NF frameworks
provide new execution environments to NFs [S]-[11], and they
usually replace a certain piece of logic in NFs with optimized
implementation.

Example of accelerating NF 1/0. Data Plane Development
Kit (DPDK) allows an application to send/receive packets
directly to/from NICs, which bypasses the protocol stack in OS
kernels. DPDK can significantly accelerate packet I/O in NFs,
and thus draws wide attention [6]. To apply DPDK in many
existing NFs, the NF developers need to identify the packet I/O
logic in NF programs and replace the I/O function as well as
the corresponding data structure — replace the char+ pkt
and pcap_loop () inlibpcap by struct rte_mbuff and
rte_eth rx_burst () in DPDK.

Example of accelerating pattern match in NFs. GPU
naturally supports parallel processing, which is applied in
NFs to process multiple packets or multiple chunks in one
packet in parallel (e.g., pattern match, parallel encryption [7]-
[9]). When applying GPU acceleration, NF developers need to
identify the location of the operators?, build the GPU-based
implementation, and conduct the replacement. Similarly as the
example above, this replacement needs to be performed on
NFs one by one.

Example of securing NF states. Outsourcing NFs into an
untrusted environment (e.g., a public cloud) usually causes
security concerns for NF users. A set of work proposes to
apply Intel SGX to protect NF states from the untrusted
underlying OS [10], [11]. However, this modification is still
non-trivial: the NF developer needs to identify the sensitive
code and data in the NF (usually NF states) and seal them
with SGX abstractions. For example, when Han et al. port an
IDS to Intel SGX, it brings about 2.5k extra lines of code in
the modification [11].

Intuition. We observe that the development (or porting) of
NFs for the platforms usually focus on a specific piece of logic
and implement it in an optimized way. Thus, the intuition to
build NFs universal to these platforms is to use high-level
programming abstractions to replace the code in the programs,
and use the compiler to link the programming abstractions to
platform-dependent implementation at link time.

2“QOperator” (alone) means a language element that operates on operands;
“network operator” means a role in production networks who manages the
network infrastructure.

NF Developer

Platform Developer

Network Operator

Platform-
NF Models specific Plugin

NF NF C il
Abstractions ompiler

Fig. 1: NFD architecture and workflow

NF Executables

Runtime
Environment

2) Management Platforms: The second class of NF plat-
forms [1]-[4]integrate NFs with the control plane from better
management. They still operate on a certain piece of logic, but
they further need to instrument NFs to achieve the interaction.

Example of integrating NFs with state management
framework. OpenNF is a network controller which jointly
controls flow routing and NF placement in a network. It could
flexibly scale NFs out and in. To integrate an NF with OpenNF,
the NF developer needs to add a local agent in an NF, which
communicates with the OpenNF controller and operates on
NF local states (add/remove/modify). This is usually not a
trivial process; as described by [2], [12], modifying PRADS
and Snort takes more than 100 man-hours respectively.

Intuition. We observe that these platforms not only operate
on a piece of logic in NFs but also need to instrument
the program to interact with that logic in the NF program
structure. Thus, the intuition to build NFs for these platforms
is to further build a compiler backend, which can traverse the
NF program structure and apply changes to all NFs.

B. Solution Overview

Towards the goal of building rapid development framework,
we take two techniques to build our solution — domain
specific language and program compilation time optimization
(more precisely, it should be transformation).

We propose an NFD language to program NFs. The lan-
guage first contains common language elements such as basic
types, expressions, statements, and control flows in high-level
language (e.g., C/C++). More importantly, it declares some
certain elements as programming abstractions. The program-
ming abstractions are summarized from the individual NF
porting cases [2], [11], current NF development frameworks
(e.g., Netbricks [13]), and some network management solu-
tions (e.g., NF placement, verification). NF developers use the
language to write NF (behavior) models.

As Fig.1 shows, NFD has a compiler to translate the model
to an executable and integrate platform specific features. The
compilation process first translate an NF model to a syntax tree
(compiler frontend parser), and then traverse the syntax tree to
generate runnable code (compiler backend). NFD compiler’s
backend would generate C/C++ code in Linux in preliminary,
and also provides interfaces of (1) the syntax tree of the
NF model and (2) a tree traversal API, which can overwrite
the tree-to-code translate or instrument other logic. Thus, a
platform developer could use the interfaces to build platform
“plugins”. By combining an NF model and a platform plugin,

NFD would generate executable that both has the NF model
functionality and adapts to the platform.

IIT. NFD LANGUAGE AND NF MODELS

We introduce the NF modeling language and the corre-
sponding NF programming abstractions. And later we show
the representative SMAT model structure and several NF
examples.

A. NF Modeling Language

General Program Elements

const c = (o|n)*
variable var
expression e = c|var|e|Expr_Op(e1,ea2,...)
condition T := Rel_Opl(e,..)|Log_Op(zx,..)|(x)
model model = stmts
statements stmts = stmt|stmt; stmts
statement stmt = war = el|if|loop
if statement if = if (x){(stmts} else {stmts}

loop statement
NFD Specific Extension

header field h
state st

Fig. 2: NFD language for NF models

loop while(x) then {stmts}

sip|dip|sport|dport|protol...
declare state s

Figure 2 shows the NFD language syntax. Note that this
language is a summary of several existing solutions [14]-[17]
— it could equivalently express the same semantics as existing
solutions, but is also enriched with several new abstractions
(§ I-B). Alternative language designs are also acceptable as
long as they can express NF logic.

NFD language contains basic language elements in general
high-level programming languages (e.g., C++, Rust), including
basic types, expressions, statements, and control flows3, so
that the language can be semantically complete to express all
existing NFs developed in high-level languages. The semantics
of these elements are the same as that in the high-level
language, and we omit it here for space. A formal definition
of the language semantics is in [18].

We further introduce a few NF specific extension. The
extension does not change the program language syntax, but
it explicitly declares some elements as NF specific logic. We
reserve a few keywords (sip, dip, etc.) to represent packet
header fields, they refer to the current packet at runtime. We
explicitly declare NF state as “state variable”.

We further define a few derived symbols and notations in
Table I to simplify the text description. The “[]” operator has
multiple meanings: (1) if the input is a packet header field
(e.g., sip, dip), it would parse the packet to the corresponding
layer and further fetch or modify the field value; (2) if the
input is a tag (e.g., BR, output in §1II-C), the operator would
look up or modify the map structure [19]; (3) if the input
is an attribute (e.g., size in the rate limiter example below),

3The Expr_Op(e1,ea,...) operator is an abbreviation of various op-
erators: arithmetic (+,—, X, /,++,——), set (N,U,\), index ([]) , and
user-defined (Encrypt, Hash, NAT) operators. Rel_Op(e,...) stands
for relations: equality(=, #), scalar(>, <), set (C,€), and user-defined
(PatternMatch) relation operators. Log_Op(z, ...) stands for logical op-
erators: and, or, not.

TABLE I: Derived symbols in NFD language
[symbols]
fln

FITAG]

meaning

h is a header field (Figure 2 does not list all fields),
and f[h] is the field h in packet f.
We append tags to each packet for flexible processing [19],
which can be viewed fields of a packet.
Record the output ports of a packet. floutput] := {p1, p2} means
floutput]|sending packet f to port p; and ps. floutput] := e means dropping
the packet.
r|Abbreviation for A rule: hy = vy A ho = va A ...
f E r|Abbr. for a flow-rule match: f[h1] = v1 A flha] = va A ...
R[Abbreviation for a rule set: {ry,72,...}
FER Abbreviation for a flow-ruleset match
(f match one of rulesin R): fE 1 VfE ra V...

the operator would compute and return corresponding value;
(4) floutput] := resubmit means the packet is resubmitted
to the table; and f[output] := timer(t) means the packet is
resubmitted to the table after time ¢, which is used to develop
time-driven logic. The “E” denotes as a flow predicate, which
means whether a flow matches a rule (i.e., values in multiple
fields) or a rule set.

B. Representing NF Programming Abstractions

The syntax and its semantics can express common program-
ming abstractions in NF programming frameworks [3], [13],
[15]-[17], [20]-[23], including packet parsing (f[h]), depars-
ing (f), and transformation (f[h] = e), drop (f[output] = €),
and filter (f E R).

We allow wusers to implement their own program-
ming abstractions. All these abstractions are denoted
as UD_Op(“Func_Name”,*args), but the user should
also provide a corresponding implementation like void
Func_Name (*arg). They are in the class of “Expr_Op”.
In NFD, we implement “Encrypt” (encrypting a byte stream),
“PatternMatch” (searching a pattern in a byte stream),
“hash”(in hash-based load balancer), and “NAT” (a non-
replacement IP sampling algorithm for IP translation). We
also create two long-neglected abstractions in NFD— state
abstraction and time-driven logic abstraction.

State abstraction. An NF state is usually associated with
a flow of certain granularity, and all operations on the state
should fall on one specific instance of that granularity. For
example, a 5-tuple “per-flow packet counter” is actually not
one counter, but stands for a set of instances with each instance
counting one S-tuple flow’s packets. Such states are usually
declared as a group of variables in existing frameworks (e.g.,
array “int counter[1000]” or “map<flow, int> counter”), each
state update needs to be accompanied with a lookup operation
in the group of variables.

NFD uses a class to abstract the NF state. The state class
has an attribute describing its granularity (i.e., a list of header
fields, e.g., 5-tuple). The class maintains concrete instances
of the same granularity internally, and all operations upon the
state class would fall on an instance (by default of the current
flow in processing). In the per-flow counter example above,
the counter should be declared as

int counter <sip, dip,
The instances of a state class are allocated on demand: NFD

sport, dport, proto> = 0.

class State_Counter{
string type="int"; Value value=0;
int granularity=sip&dip&sport&dport&proto;
map<unsigned , Value> instances;
State_Counter& operator++(){
key=hash (pkt&MaskOf(granularity));
if (instances.find (key)==instances.end())
instances.put(key, value);
instances [key]++;

}ohs

O O 0 B W) —

—_

Fig. 3: The counter state class of a per-flow monitor: member
variables and an overridden operator

overrides all operators to the state class; once a state is
operated on, the operator function would first check whether
“current flow” has an corresponding instance of that state; if
no, a new instance of the flow would be created and added to
the state instance map; and then the operator proceeds with the
instance. Figure 3 shows the implementation of the state class
in the per-flow monitor example including attributes, instances,
and an overridden operator ++-.

Time-driven logic abstractions. Some NFs contain time-
driven logic; for example, a rate limiter “periodically” re-
freshes tokens for packet dispatching. This abstraction was
not proposed in existing NF development frameworks. NFD
captures it by adding an operator timer(flow, At) to describe
resubmitting a flow after time At, which complements the NF
time-driven logic.

Advantage. Using programming abstractions instead of
self-development has two benefits. (1) It helps the developer
to reuse the code and avoid making mistakes. For example,
using the state abstraction above can save development effort
to rebuild it, and avoid mistakenly declaring a state in Figure 3
as a single variable). (2) It helps NFD to locate the “platform
specific target piece of logic” in the future platform integration
(§ V). For example, the state abstraction helps to find the state
and integrate to state management system [2].

C. A Model and Use Cases

l Stateful Match Action Table [
entry entry =
SMAT smat =

if (xy A xs)then (py;ps) else L
entry|entry; model

Fig. 4: SMAT syntax

We show a few cases where NFs are developed using
NFD language. As discussed a few existing works [24] and
exercised by industry [1], a wide range of NFs can be
implemented as a stateful match-action table (SMAT), whose
structure can be expressed as Fig. 4 in NFD. We visualize
the programs in tables for a better view and space limitation.
SMAT’s semantics is that each entry first match flows and
states, and if the match result is true, the action is taken and
stop, otherwise, proceed to the next row (i.e., the first match
applies).

Figure 5 shows the example of a stateful Firewall, a stateful
NAT, and a load balancer that stores the consistent mapping of
a flow to a backend server. In addition, we design a rate limiter

[Match Action
State

[Flow | State | Flow [

Configuration: OK={rl, 12, ...}

Stateful || fEOK - floutput]:=IFACE

seen:=seenU{f}
Firewall f |[f&seen floutput]:=IFACE -

fE OK|féseen floutput]:=€

f [f¢map [:=NAT(); floutput]:=IFACE |

NaT || mapliT-=NAT(D)
| | fe€map | f:=map[f]; floutput]:=IFACE | E
Configuration: mode = ROUND_ROBIN

LB f[f€ map] fldip]:=srv[map[f]]

f [* [f[dip]:=srv[idx] [map[ﬂ::idx; 1dx:=(1dx+1)%N

Fig. 5: Examples of NF models

[Init: tkn:=TOKEN, fymy[BR]:=REF, fymy[output]:=timer(At) |
[Match
[flow [state |
f[BR]=REF *

* f[size]<tkn
* f[size]>tkn

Action |

flow [state |

floutput]:=timer(At) | tkn:=TOKEN

floutput]:=IFACE | tkn:=tkn-f[size]
floutput]:=e -

Fig. 6: The model of a rate limiter

to validate the fimer operator— a rate limiter in Figure 6.
It uses the leaky bucket algorithm: the rate limiter refreshes
tokens periodically; and for each traversing packet, if there are
enough tokens left, it is sent by consuming them; otherwise,
it is discarded.

IV. NF COMPILATION

NFD compiles NF models to NF programs and also provides
the syntax tree of the NF model.

NF Code Generation. NFD compiles an NF model to
a C++ NF program by the following transformation. (1)
Most basic elements (e.g., control flows, expressions, pred-
icates, and policies) in NFD language can be implemented
in C++ directly. (2) States are declared and initialized as
global variables at the beginning of the program. (3) Time-
driven logic is incorporated as Fig. 7 depicts. The program
initialization and the flow processing can add time events to
the timer event queue; the timer signal handler calls the flow
processing logic recursively. The timer signal is masked at the
beginning of each pass of flow processing and unmasked at
the end. Thus, timer events would not interleave with the flow
processing iteration, preventing timer events from preempting
flow processing and mistakenly polluting states in use. (4) All
NFs share a common program skeleton for packet I/O: the
compiler declares and initializes states at the beginning of the
program, wraps up NF model code in an infinite loop and
adds a flow receiving/sending function at the beginning/end
of the loop. Thus, the NF program would repeatedly fetch
and process flows.

timer event

timer event queue

trigger{signal

void Process(pkt){ //match-action table with temporal logic——

int main(){
while(1){
Mask_Timer_Signal();
pkt=recv(...); Process(pkt); send(pkt);
Unmask_Timer_Signal();

by

signal|enabled

void Timer_Signal_Handler(pkt){ Process(pkt); }

Fig. 7: NF program structure

After compilation, most basic language elements are nat-
urally supported by C++ (e.g., arithmetic operator, control
flows). Remaining operations are supported by the NFD library
including some complicated operators (e.g., “PatternMatch”,
“Encrypt”), “flow” class with “[|” as in § III-A and “state”
class as in § III-B. In the final compilation from a C++
program to a binary executable, they would be linked together.

__ Match
Init While For Each Packet Entry

/ / / / o

Match-Action 1

Program > loop ——> Body — Loop —= Table — Entry -
__ Match

Send Entry

Receive
Action

Action

Action

Fig. 8: A part of the syntax tree of a SMAT

NF Syntax Tree. An NF model built on the NFD language
syntax would follow a tree structure: deriving a program to
composing sections (i.e., I/O, initialization, model), deriving
each section to statements (i.e., match and action), and deriv-
ing each statement to basic symbols (variables, constants, and
variables).

For example, Fig. 8 shows the syntax tree of a SMAT,
where the root “program” derives an “init” block and a “loop”
block, the “Match-Action Table” block derives multiple “en-
try” blocks, and each entry can derive the predicate and policy
statements (omitted in the figure). The variables, constants, and
operators in predicate and policy statements are basic symbols,
and the remaining nodes are deriving symbols.

V. NF-ENVIRONMENT INTEGRATION

NFD provides interfaces to operate on NF syntax tree,
by which environmental features can be added to the NF
program. We show the cases in § V-B, where the integration
is performed automatically using NFD.

A. Programming Interfaces

The programmable interfaces for platform integration are a
tree traversal function and per-symbol callback functions. (1)
According to the NFD syntax, NFD compiler would generate
one callback function for each symbol. For example, it would
generate a visitSMAT () for the symbol SMAT and a
visitEntry () for Entry in Fig.8. These callback functions
are initially empty, but can be overridden by programmer
to add their logic. (2) NFD provide a tree-traversal function
for syntax trees. The function is input with a syntax tree, it
traverses the tree with a depth-first-search (DFS) order. When
visiting each node on the syntax tree, the function would check
the type of the node (e.g., SMAT or Entry or Init) and invoke
the corresponding callback function.

Note that the preliminary compilation in § IV is also
implemented by this interface. The preliminary compiler tra-
verses the NF model’s syntax tree and translate each node to
corresponding C/C++ implementation. Integrating an NF with
new platform needs the programmer to inherit the preliminary

1| public static void main(...) {

2 new OpenNFVisitor. visit(syntax_tree);}

3| public class OpenNFVisitor implements NFDCompiler{

4 @Override public T visitInit (...){

5 AddAgentCode (...)

6| InsertCode ("List<State>_allStates")

7 super. visitlnit (...)} // orig. compilation

8 @Override public T visitStateDeclaration (...) {

9 super . visitStateDeclaration (...)

0 stateName = ... // get the state name

1 InsertCode (String . format("allStates .add(%s)",
stateName)) }

Fig. 9: Code of the OpenNF plugin

I| public static void main (...) {

2 new SGXVisitor. visit(syntax_tree);}

3| public class SGXVisitor implements NFDCompiler{
4 List<String> sensitiveFunc;

5| List<String> sensitiveData;

6| @Override public T visitStateDeclaration (...) {
7 stateName = ...

8| sensitiveData .add(stateName);}

9 @Override public T visitStateMatch (...) {

10 FuncName = ...

11 sensitiveFunc .add (FuncName) ;}

12 @Override public T visitStateAction (...) {
13| FuncName = ...

14 sensitiveFunc .add (FuncName) ;}

Fig. 10: Code of the SGX plugin

compiler and override the per-symbol callback function. Pro-
grammers can add new logic in the callback function or even
replace the original one. We call the class that inheriting the
compiler a “platform plugin”.

B. Use Cases

We walk through the examples in §II to show how NFD
performs the integration.

Example of 10 acceleration with DPDK. We first iden-
tify the abstraction of IO is “Receive” symbol. Then we
inherit the preliminary compiler and create a DPDK platform
plugin named DPDKVisitor. In the plugin we override
the callback function named visitReceive (). In the
callback function visitReceive (), we do not call the
super class (i.e. the compiler), but add DPDK implemen-
tation (rte_eth_rx_burst ()). In other callback func-
tions, we just call the super class’s method. We execute the
DPDKVisitor.visit (syntax_tree) to traverse the
syntax tree again to generate new programs; the 10 logic is
replaced and others are not changed.

Example of GPU acceleration. Similarly to the DPDK
acceleration, GPU acceleration is to override the operator
PatternMatch (). It use an GPU implementation to replace
the CPU one.

Example of integrating with OpenNF. Integrating to
OpenNF is a bit complicated, but the workflow is the same.
Each NF needs to make three modifications: (1) adding the
agent code which starts the agent thread in the initialization,
(2) adding a collection of all states in the NF so that they
are retrievable in state operations, and (3) implementing the
interfaces of state operations (get/put/delete).

We build an OpenNF plugin for (1) and (2), and build
an external library for (3). Fig. 9 shows part of plugin. The
plugin override visitInit () and add the logic to start
the OpenNF agent and declare allStates variable (line 6);
it then overrides the visitStateDeclaration (), where
the name of each state varialbe is added to allStates. By
calling OpenNFVisitor.visit (syntax_tree), the
code about (1) and (2) are instrumented to the final NF code.

In the external libaray, when get/put/delete a flow is
called, the “List of all states” is iterated, each state would use
[flow] to operate on the corresponding state instance. NFD
links the external library with the OpenNF plugin generated
code, and achieves an executable integrated with OpenNF.

Example of adding SGX protection. SGX protection
needs to find out all NF state variables and state related
functions, and seal them in a specially protected memory
region. Fig. 10 shows the plugin for this. It overrides the
visitStateDeclaration (), visitStateMatch (),
and visitStateAction (). In each overriding function,
the plugin collect the variable names and function names.
Finally, the plugin outputs the list of state variables and
functions. NFD use the list to generate an SGX configuration
and compile the code with configuration, and outputs an SGX-
enhanced executable.

VI. IMPLEMENTATION

TABLE II: Lines of code in NFD partial implementation

Component of NFD Lines of Code
NFD model grammar 234 (g4)
compiler frontend (automatically derived by Antlr) 4.3k (Java)
compiler backend (generate C++ NF programs) 1137 (Java)
C++ template (program structure, operators) for NFs 752 (C++)
extension for OpenNF 489 (C++)
extension for GPU 668 (C++)
extension for DPDK 167 (C++)
extension for SGX 273 (C++)

NFD Implementation. We write the syntax of NFD lan-
guage in g4, and use Java Antlr4 to build the NFD compiler
frontend (i.e., the parser) and the platform integration inter-
faces (syntax tree traversal function and callback functions).
Then we implemented the preliminary compiler and plugins
for different platforms. The lines of code of some components
are listed in Table II.

The NFD compiler has a few tunable parameters. (1) It can
configure whether to generate a packet NF or a bytestream
NF. A packet NF operates on each packet using pcap library
[25] and a bytestream one operates on each flow using socket.
For example, a packet LB modifies the destination IP and port
for each packet, while a stream-level LB terminates incoming
TCP connection and relays byte streams to the next TCP
connection. As the NF types is configured, the compiler would
also perform a semantic check: packet operators cannot be
applied to bytestreams and vise versa. (2) For environmental
plugins (OpenNF, Intel SGX, GPU, DPDK), the NFD compiler
has arguments to decide whether to add the plugins to NF

programs.*

NF Development. We developed 14 NFs using NFD,
spanning security-featured NFs (e.g., Firewall, heavy hitter
detector, and flood detector), LBs (layer-3 and layer-4), NAT,
monitors, and rate limiters. The typical NFs in Fig. 5 are used
for representing results in this section. A complete list and
testing results are in [18]. In addition, we also collect several
commodity NFs to compare with NFD-based NFs (for logic
and performance): they are Snort, PRADS, Balance, HAProxy,
and Click NAT [26]-[30].

Experiment Settings. All NF tests are on three servers
connected to one switch, each server with Intel 199 CPU (10-
core, 20-thread), 128GB memory, 10Gbps NIC, three NVIDIA
GTX1080 Ti graphics cards, and 1TB SSD. And we collect
the network traces in [31] to test our NFs. An NF experiment
is performed in one of the following four ways: (1) Unit-
1host: the network I/O is removed, and a prepared trace file
is injected directly into the NF’s processing logic, and the
NF runs merely on one host; (2) NS-1host: an NF runs as
a native process on one physical host, and it is chained to a
sender and a receiver on the same host using Linux Network
Namespace and Open vSwitch (OVS) [32]; (3) VM-1host: the
NF is wrapped up by a VM (using KVM [33]), and the NF-
residing VM is chained to a receiver VM and a sender VM
by OVS on the same host; (4) Native-2hosts: the NF runs on
one host as a native (non-virtualized) process, and it is chained
with a sender and a receiver on another physical host.

VII. EVALUATION

We show that NFD can save development workload, its NFs
are functionally valid, the integration of NFs with platforms
works correctly, and NFD can be used to develop complex
NFs that equivalent to commodity ones.

A. Saving Development Workload

Comparing the LoC. Theoretically if we want to build n
NFs in m environments, the traditional development method
would cause a workload of O(nm), while NFD can presum-
ably reduce the workload to be O(n + m).

We use the lines of code (LoC) to quantify the development
workload. As in TABLE II, building the NFD framework needs
2123 LoC (234 for language grammar, 1137 for compiler
backend, and 752 for NF template; the 4.3k LoC of derived
frontend parser is not counted). With this platform established,
each of the NF models costs 20 LoC on average. And the four
environments cost 1597 LoC in total (489 for OpenNF, 668
for GPU, 167 for DPDK, and 273 for SGX). Thus the total
development workload is 1877 LoC.

Among all final NF programs, their platform independent
logic is usually 750+ LoC (from the template and SMAT).
GPU platform works only for bytestream NFs (IDS, encryp-
tion), but the other three works for all. The combination

4By the time of this project, Intel SGX compiler does not support C++
STL. We replace C++ STL classes that are used in NFD by self-developed
code. This change does not affect any steps of NFD. It only requires the SGX
compiler to compile NF programs with the self-developed code. It would be
resolved when Intel releases a SGX compiler supporting C++ STL.

of 14 NFs and 4 platforms cost totally about 700k LoC
(750 x (489+167+273)+668 x 2). Without NFD, these work-
loads would be undertaken by human programmers, which is
a significant burden compared with the NFD approach (700k
v.s. 1877).

Case study of SGX. In another empirical study, we compare
the development man-hour of a non-NFD SGX-enhanced
network monitor with that of a NFD-based one (details in
§ VII-C). For one of the authors, without NFD, it takes one
week to learn SGX programming from an SGX expert, it takes
another two days to build an SGX-enhanced network monitor
(totally 72 man-hours for the student and some consulting
time with the SGX expert). While using NFD, the graduate
student spent one hour writing a network monitor SMAT
model and less than one day building a SGX plugin (following
the requirement from SGX), which only takes 8 man-hours
for the student. Last but not least, that SGX plugin can be
applied to any NF SMAT model in the future. NFD shows
good potential to improve productivity.

1200 [64 Bytes P s512Bytes ------+ B8 64 Bytes] 512 Bytes
= 2000 — o = DT L
—_ 7] 128 Bytes [1024 Bytes [B 128 Bytes [1024 Bytes
M H Lo - mrH
_81000 B3 256 Bytes 1500 Bytes 7: 2 B 256 Bytes 1500 Bytes
E 8OOL <o B @ 1900] i
= H H ©
g H H o
& 600F -] N 21000
g H H 7
9 400p--------- a fl &
S | il 8 500
200f---- MR <
0 H n
100 200 400 600 800 1000 100 200 400 600 800 1000
Rate (mbps) Rate (mbps)

Fig. 11: NFD rate limiter performance

B. Individual NF Validation

We show that NFD outputs logically correct NFs.

Logical correctness. Our basic methodology to validate an
NF’s logic is to use traces to test whether the NFD-based
NF has the same behaviors (to packets) as expected (either
a commodity NF or pre-computed results). We compare the
following pairs of NFs: (1) NFD-based Firewall v.s. Snort
(using first 1M packets from the trace and tuning alert rules),
(2) NFD-based bytestream LB v.s. Balance and HAProxy
(tuning round-robin or hash mode), (3) NFD-based NAT v.s.
Click NAT (tuning internal and external address pools). In
the test result (in [18]), if NFs perform deterministic behav-
iors (e.g., IDSes, round-robin LBs), NFD-based NFs have
the same behavior with the commodity NFs; if NFs have
random behaviors (e.g. hash-based LB, NATs), the behaviors
for each individual flow are not exactly the same between
the NFD-based NFs and the commodity ones, but flows’ total
behaviors for a pair (of the NFD-based NF and the commodity
one) follow the same distribution (e.g., uniform distribution
from frontends to backends in hash-based LBs, non-collision
mapping from an internal address pool to an external one in
NATS).

We then test whether NFD-based rate limiter has the ex-
pected rate control for flows. We set up a VM-1lhost exper-
iment for the rate limiter, and tune the sending rate and the
packet size. We draw the actual packet processing rate and
throughput in Fig. 11. We conclude that there is an upper

bound of the packet processing rate, which is about 1.67 mpps
(the 64B bar of the rightmost group). And if the target rate
is not too large to exceed this packet processing rate (i.e.,
Control_Rate/Packet_Size < 1.67 mpps), the rate limiter can
control the sending rate accurately as the configuration.

Performance (Unit-1host). We test whether NFs’ perfor-
mance is acceptable. We repeat the unit test on Firewall, tune
the number of rules and granularity of rules, and measure
the throughput and packet processing rate. Fig. 12 shows the
performance in the case of 10 rules which deny traffic with
a few IP (layer-3) or IP+Port (layer-4). We observe that (1)
NFD-based firewall performs significantly better than Snort
(2.5mpps v.s. <0.5mpps). By looking into the code, we find
that the performance gap is from the implementation of flow-
rule match: Snort uses linked list to store rules from the
config and matches a packet one by one; but the rules in the
NFD model are finally embedded into the code. Hence, our
firewall has better performance. > (2) The NFD-based firewall
configured with layer-3 rules has better performance than that
with layer-4, but Snort does not show this trend. The reason
is that Snort blindly parses any packets to layer 4, but NFD
firewall would adapt the parsing depth to the configuration.

The performance of bytestream LBs lies in Fig. 13. The
experiments are under Unit-1host (using the socket for inter-
process communications between the sender, the NF, and the
receiver). LBs are in round-robin mode and there are five
backend servers in each experiment. We tune the number of
incoming flows from the frontend. We observe that (1) NFD-
based LB always has higher throughput than HAProxy, and
it also outperforms Balance when there is only one flow.
The reason is that Balance and HAProxy are commodity NFs
with a lot of extra features (e.g., group-based round-robin in
Balance, consumer-producer based I/O model in HAProxy).
Although we carefully turn unused features off to make the
comparison fair, the Balance and HAProxy program still
silently execute some unused features, wasting CPU cycles.
(2) Balance would outperform the other two LBs when there is
more than one flow. The reason is that Balance would create a
process (fork ()) for each new connection, and thus leverage
the multiple cores on the machine. But this advantage fails to
increase when the server side is fully loaded (i.e., >5 flows
for 5 backend servers).

We make a complete test for all NFs and list their perfor-
mance in [18]. Unit performance tests show that NFD-based
NFs have acceptable performance, and in a lot of cases they
can be viewed as micro-services without redundant features,
which gives them better performance.

Performance (Native-2hosts). We put NFs into a synthe-
sized environment to see whether they would become the
bottleneck of the system. We choose various NFs (stateful
Firewall, stateless Firewall, NAPT, layer-3 LB) and tune the
packet size (64B-1500B). Fig. 14 shows the throughput when
these NFs use DPDK or libpcap. We observe that libpcap

5We use Snort 1.0 which only contains layer-3 and layer-4 parsing, and thus
we can exclude the possibility that Snort has other CPU-consuming logic.

n
Qg — L ____ .
= H [
RIPY I = -, I = [T 1 I =
= B o[o
FAEY N = I - - -------- = N = 1 I - P
S H 0 [o[0 H
S2F-H--&H--FB----- o--H--3----- 1 - H--F---
< L] L] L L L] L] L L L] L] L]
R 8 e 1500 o LI 5 = O < = O < = I S =S = =
Firewall Firewall Firewall Firewall DS DS DS DS NAPT NAPT NAPT NAPT Load Load Load Load
648 1288 5128 10248 648 1288 5128 10248 648 1288 5128 10248 Balancer Balancer Balancer Balancer
. . . 648 1288 5128 10248
Fig. 12: Unit test of NFD FW Fig. 13: Load bal-
v.s. Snort ancers Fig. 14: Performance of 4 NFs, tuning packet size

—¥— CPU
—— GPU 10

- cPU
T 00 = oru
3 k7

£
@ 107
g S
4 210

100

05 1

10t 10° 10¢
Byte Stream Size (Byte)

Processing Time (us)

= cPu
-+ GPU
1
s /

10t 100 10¢
Byte Stream Size (Byte)

10 10° 10°
Number of Patterns

(a) Encryption
scaling up byte
stream size

(b) Pattern matching (c) Pattern matching
scaling up number of scaling up byte stream
patterns size

Fig. 15: GPU acceleration (Unit-1host)

usually achieves <lmpps throughput, while DPDK NFs can
achieve 1-5Smpps throughput. For DPDK NFs, the throughput
is constrained by the total bandwidth 10Gbps. Thus, NFD NFs
could process packets at a line rate of the NIC.

C. NF-Platform Integration

We show the use cases of integrating NFs with environ-
ments, and measure their performance.

Accelerate processing with GPU. Atop CUDA Toolkit
[34], the two operators — encryption and pattern matching
— are integrated with bytestream NFs. The performance
result is in Fig. 15. We have the following observations:
GPU operators need more preparation time (e.g., copy data
from memory to GPU), but accelerate performance by parallel
computation. In Fig. 15a, GPU is slower in encrypting <6KB
bytestream, but faster in large bytestreams; because the en-
cryption chunks a bytestream and encrypts blocks in parallel.
Similarly (Fig. 15b), GPU could match >5K patterns at a faster
speed than CPU, but slower for <5k patterns, because these
patterns are matched in parallel. GPU operators perform worse
than CPU when preparation time dominates during the process.

Alternative packet I/O using DPDK. NFD provisions NFs
with different packet I/O drivers (DPDK and Libpcap) and
deploys them in the path of two end-hosts. Fig. 16 shows that
end-to-end RTT in VM-based test. Benefiting from the kernel
bypass technology, DPDK has about 10X smaller RTT than
libpcap (405us v.s. 6952us).

NF state management with OpenNF. We port NFD-based
NFs to an OpenNF platform. We use NFD-based Firewall to
replace the NFs in the state move experiment in the OpenNF
report (§8.1.1 and Fig.10 in [2]) and repeat the experiment. We
observe NFD-based Firewall successfully interacts with the
OpenNF controller, and the experiment result is in [18]. We
draw the similar conclusion as in OpenNF [2]: (1) the stricter
state migration requirement (no guarantee (NG) > loss-free

(LF) > order-preserving (OP)) makes the state move time and
packet latency longer; (2) the optimizations (parallelizing (PL)
and late-locking-early-release (LLER)) in OpenNF improve
the state move time and packet latency.

Enhance NF security with SGX. We use NFD to generate
three pairs of NFs — flow counter (FC), packet load bal-
ancer (LB), and NAPT. Each pair has one NF without SGX
protection and one with it to protect states. We set up Unit-
lhost for these NFs, tune the number of flows, and measure
their performance in Fig. 17. We observe that NFD NFs can
achieve Impps in SGX environment, which is acceptable.
But compared with the same setting without SGX, where
the throughput is usually >10 mpps®, we conclude that SGX
environment is the bottleneck.

D. Case Study: Complex NF Development

Replace NF chains by consolidating them. In current
NFV systems, NFs are fixed and chained to get complex
functionality. NFD could provide an alternative solution —
consolidating NF models and generate one executable.

We use the example in § I, where a network client needs
a load balancer with blacklisting. This can either be imple-
mented by chaining a firewall and a load balancer (denoted as
“FW—LB”) or by consolidating a firewall model with a load
balancer model using NFD (denoted as “FW+LB”). Fig. 18
shows the CDF of the time of delivering packets from the
sender to the backend server on KVM testbed with these two
approaches.

We observe that each NF (FW, LB) increases the network
latency (median) from 5087us (baseline, “No NF”) to 12895us
(FW) or 12637us (LB), and chaining NFs doubles the latency
(20331us in “FW—LB”), but merging them does not increase
more latency compared with a single NF (13831us). Thus,
NFD provides a more appealing alternative approach for NF
chaining.

Build a complex NF equivalent to a commodity NF.
pfSense [35] from Netgate has now become a prevalent NF
for in-network security. It embraces several core features in the
data plane, including firewall, NAT, LB, and rate limiter’. We
make an equivalent implementation in NFD by concatenating

This number is large. Because SGX does not support C++ STL, and we
replace the map data structure by an array in all four NFs.

7For other features, pfSense can provide other off-path data plane services
such as DHCP and DNS, which should be provided independently instead
of being synthesized with the four on-path functionalities. The web GUI of
pfSense is in the control plane, and we do not consider it in NFD.

Lo 10° g nFo-FC B8 NFD-LB 5 NFD-NAPT
—*— DPDK L0 5
084 —a libpcap _ NFD-FC-SGX NFD-LB-SGX NFD-NAPT_SGX —¥— NoNF & \FO
a - . 081 —— FW — pfSense
y 06 10 gl R — 1B g
S s 2 :: K W 061 —— FW > LB ER
) H W H] —— FW+LB E
02 2 106 i H ul 04 52
£ haNll N N o 3
OO 102 10° 104 l u g) F1
RTT (us) 108 H b 0.0
10 100 5000 10000 20000 10t 107 102 10t C—s 512 1024
. Number of Flows RTT (us) Packet Size(Byte)
Fig. 16: Packet 1/O:
DPDK versus libpcap Fig. 17: NF performance with and with- Fig. 18: RTT of NF chains Fig. 19: NF performance
(VM-1host) out SGX (VM-1host) compared with pfSense

the SMATS of these four NF models and compiling the merged
model to a synthesized NF program.

Evaluation shows that the NFD-based NF has equivalent
logic compared with pfSense, but a small performance degra-
dation (Fig. 19, e.g., 1.68 v.s. 2.08 gbps when packet size
is 512B). The degradation is caused by the non-optimal (but
universal) data structure and redundant parsing in NFD, which
is the tradeoff between the agile development and performance
and can possibly be improved using compilation optimization
techniques.

VIII. DISCUSSION AND RELATED WORK

Design choice of NFD Language. NFD ‘“summarizes”
the programming abstractions from existing development and
modeling frameworks (with two own new abstractions). The
language is interchangeable with most existing languages,
e.g., SNAP [17], VFP [1], P4 [36]. As long as the the
compiler of other frameworks could provide the same syntax
tree modification interfaces, the methodology in NFD can be
applied similarly.

Deployment progress. NFD is currently anonymously open
sourced in [18]. Its model-based NFs have recently be released
on OpenNetVM [37].

NF development frameworks Most recent NF development
frameworks target one environment or platform, and summa-
rize NF programming abstractions, such as packet parsing,
filtering, transformation [12], [13], and NFD complements the
part for cross-platform integration. Modular NF development
[21], [38] eases the composition of NFs, but they do not
target cross-platform deployment, because intra-module logic
are still ad hoc and not designed to be platform independent.

NF management frameworks Traditional NF management
frameworks [3], [37], [39]-[41] view NF as monolithic logical
unit, which does not help logic design inside NFs. And
several platform specific development/porting solutions are
bound with the environment related features (e.g., SGX, GPU,
OpenNF, DPDK) [2], [6], [7], [9]-[11], [34], [42], [43],
which lack cross-platform abstractions. Thus, we believe NFD
would complement the insufficiency of existing development
frameworks/methodologies by NF logic (re-)design and cross-
platform adaptation.

NF Frameworks for other purposes. A few recent NFV
frameworks are proposed for various requirements [44], [45],
into which NFD would be a great help to port NFs. SNF
[38] proposed DAG-based NF chains can be synthesized to

eliminate cross-NF redundancy, where NFD NF models can
contribute to the synthesizing. Like DPDK, other IO acceler-
ation solutions (e.g., mTCP [46]) can also override NFD I/O.
CHC requires NF states to be identified for integration [47];
Metron [41] requires to anatomize NFs and offloads stateless
part to hardware; VFP and Eden [1], [22] also implement NFs
on both software and hardware. For these frameworks, NFD
would be beneficial by automating NF program analysis and
porting using its compiler plugin.

Other Inspirations. NFD is inspired by several works. (1)
Packet processing operators (e.g., “resubmit”) are also used
in OVS and P4 [32], [36]. (2) Devoflow [48] proposes “rule
clone” to control switch rule explosion, and NFD adopts this
idea in the state abstraction. (3) The model language is inspired
by several NF modeling works (like DFA [49] and stateful
table [24], and also NF modeling language [17]).

IX. CONCLUSION

We built a cross-platform NF development framework
named NFD. It has a platform-independent language to de-
velop NF models; its compiler provides interfaces to operate
on the model and integrate platform-specific features. We show
the cases to develop 14 NFs with 6 platforms. Our evaluation
demonstrates NFD’s feasibility by developing NFs with less
workload, valid logic and performance, platform compatibility,
and commodity-equivalent complex logic.

ACKNOWLEDGMENT

This project is supported by National Natural Science Foun-
dation of China Grant No. 61802225 and the Collaborative
Research Award from Microsoft Research Asia.

REFERENCES

[1] D. Firestone, “VFP: A virtual switch platform for host
SDN in the public cloud,” in [4th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, 2017, pp. 315-328. [On-
line]. Available: https://www.usenix.org/conference/nsdil7/technical-
sessions/presentation/firestone

A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in Proceedings of the 2014 ACM Conference on SIGCOMM,
ser. SIGCOMM 14, 2014.

S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: A framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles, ser. SOSP ’15.
New York, NY, USA: ACM, 2015, pp. 121-136. [Online]. Available:
http://doi.acm.org/10.1145/2815400.2815423

[4] “https://leannfv.org.”

[2]

[3]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

“http://www.brendangregg.com/blog/2017-11-29/aws-ec2-virtualization-
2017.html.”

“https://www.dpdk.org.”

G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A gpu-accelerated stateful packet processing framework,”
in 2014 USENIX Annual Technical Conference (USENIX ATC
14). Philadelphia, PA: USENIX Association, 2014, pp. 321-332.
[Online]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/vasiliadis

X. Yi, J. Duan, and C. Wu, “Gpunfv: a gpu-accelerated nfv system,” in
Proceedings of the First Asia-Pacific Workshop on Networking. ACM,
2017, pp. 85-91.

K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-net:
Effective GPU sharing in NFV systems,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, 2018, pp. 187-200. [Online]. Available:
https://www.usenix.org/conference/nsdil8/presentation/zhang-kai

R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks:
Shielding network functions in the cloud,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, 2018, pp. 201-216. [Online]. Available:
https://www.usenix.org/conference/nsdil8/presentation/poddar

J. Han, S. Kim, J. Ha, and D. Han, “Sgx-box: Enabling visibility on
encrypted traffic using a secure middlebox module,” in Proceedings of
the First Asia-Pacific Workshop on Networking. ACM, 2017, pp. 99—
105.

J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for nfv: Simplifying middlebox modifica-
tions using statealyzr.” in NSDI, 2016, pp. 239-253.

A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv.” in OSDI, 2016, pp. 203-216.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software defined networks,” in 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13), 2013, pp.
1-13.

C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” in ACM SIGPLAN Notices, vol. 49, no. 1. ACM, 2014,
pp. 113-126.

C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler
and run-time system for network programming languages,” in ACM
SIGPLAN Notices, vol. 47, no. 1. ACM, 2012, pp. 217-230.

M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“Snap: Stateful network-wide abstractions for packet processing,” in
Proceedings of the 2016 conference on ACM SIGCOMM 2016 Con-
ference. ACM, 2016, pp. 29-43.

“https://github.com/netfuncdev/nfd.”

S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI'14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 533-546.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2616448.2616497
A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-
defined framework for developing, deploying, and managing network
functions,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 511-524.
[Online]. Available: http://doi.acm.org/10.1145/2934872.2934875

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263-297, 2000.

H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,
L. Koromilas, and G. O’Shea, “Enabling end-host network functions,”
in ACM SIGCOMM Computer Communication Review, vol. 45, no. 4.
ACM, 2015, pp. 493-507.

J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 2014, pp. 459—473.
W. Wu, Y. Zhang, and S. Banerjee, “Automatic synthesis of nf models
by program analysis,” in Proceedings of the 15th ACM Workshop on
Hot Topics in Networks. ACM, 2016, pp. 29-35.
V. Jacobson, C. Leres, and S. McCanne,

http://www.tcpdump.org, 2005.

“Tcpdump/libpcap,”

[26]
[27]
[28]
[29]
[30]
(31]

[32]
(33]
[34]
[35]
(36]
[37]

[38]
[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

“https://www.snort.org/.”

“https://github.com/gamelinux/prads.”
“https://www.inlab.de/balance.html.”

“http://www.haproxy.org.”
“https://github.com/kohler/click/blob/master/conf/thomer-nat.click.”

T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC *10. New
York, NY, USA: ACM, 2010, pp. 267-280. [Online]. Available:
http://doi.acm.org/10.1145/1879141.1879175

“http://openvswitch.org.”
“https://www.linux-kvm.org/page/main_page.”
“https://developer.nvidia.com/cuda-toolkit/.”
“https://www.pfsense.org/.”

“https://p4.org/.”

W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. K. Ramakrishnan, and T. Wood, “Opennetvm: A platform
for high performance network service chains,” in Proceedings of
the ACM SIGCOMM Workshop on Hot topics in Middleboxes

and Network Function Virtualization, HotMiddlebox@SIGCOMM
2016, Florianopolis, Brazil, August, 2016, D. Han and
D. Raz, Eds. ACM, 2016, pp. 26-31. [Online]. Available:

http://doi.acm.org/10.1145/2940147.2940155

G. P. Katsikas, M. Enguehard, M. KuZniar, G. Q. Maguire Jr, and
D. Kosti¢, “Snf: synthesizing high performance nfv service chains,”
PeerJ Computer Science, vol. 2, p. €98, 2016.

O. F. Report, “Accelerating nfv delivery with openstack,” white paper.
J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 3447, 2015.

G. P. Katsikas, T. Barbette, D. Kosti¢, R. Steinert, and G. Q. M.
Jr., “Metron: NFV service chains at the true speed of the
underlying hardware,” in I5th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, 2018, pp. 171-186. [Online]. Available:
https://www.usenix.org/conference/nsdil8/presentation/katsikas
“https://software.intel.com/en-us/sgx.”

S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” Dept. EECS, Univ.
California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-
155, 2015.

M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing.” in NSDI,
2017, pp. 97-112.

S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Br-
uschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda et al., “Flow-
blaze: Stateful packet processing in hardware,” in 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19),
2019.

E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mtcp: a highly scalable user-level {TCP} stack for multicore
systems,” in 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14), 2014, pp. 489-502.

J. Khalid and A. Akella, “Correctness and performance for
stateful chained network functions,” in [16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19).
Boston, MA: USENIX Association, 2019. [Online]. Available:
https://www.usenix.org/conference/nsdil9/presentation/khalid

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 254-265, 2011.

B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J. M.
Kang, “Sfc-checker: Checking the correct forwarding behavior of service
function chaining,” in Network Function Virtualization and Software
Defined Networks, 2017, pp. 134-140.

