
SFP: Service Function Chain Provision on
Programmable Switches for Cloud Tenants

Hongyi Huang
Tsinghua University

hhy.hongyi@outlook.com

Wenfei Wu
Peking University

wenfeiwu@pku.edu.cn

Yongchao He
Tsinghua University

heyc18@mails.tsinghua.edu.cn

Zehua Guo
Beijing Institute of Technology

guolizihao@hotmail.com

Abstract—Recent progress in programmable switches provides
opportunities for service function chains (SFCs) provision to
cloud tenants, which has the advantage of flexible deployment and
high performance. We devise SFP for such SFC provision in the
cloud. SFP’s data plane installs physical NFs and is virtualized
to host logical SFCs from multiple tenants. SFP’s control plane
uses a relaxed integer programming model to jointly optimize
the placement of physical and logical NFs, which can achieve
resource efficiency and high tenant traffic processing throughput
within efficient execution time. Our prototype and evaluation
shows that SFP can significantly offload NFV computation from
server to the switch and maximize the switch resource utilization.

I. INTRODUCTION

In modern clouds, network functions (NFs) undertake trans-
parent traffic processing in the network for cloud tenants. They
provide security or performance acceleration features, and
thus, gradually become primitive services in clouds. A tenant
could have multiple requirements in the traffic processing,
e.g., load balancing and security, which would be satisfied by
chaining multiple NFs in a sequence, called service function
chaining (SFC).

Many solutions implement NFs in software[1–6] instead
of dedicated hardware boxes and prove their advantages of
flexible deployment (copy and boot anywhere), easy asset
management (storing software), and flexible traffic engineering
(avoiding fixed in-between waypoints). However, the software-
based solutions have to place NFs on commodity servers and
NFs are suffering from problems of low efficiency (CPU v.s.
ASIC), computation resource overhead (CPU and memory),
distributed management (one SFC on multiple servers) and
communication cost (packet transfer between servers).

A recent trend of deploying programmable switches in data
centers [7–9] provides new opportunities for cloud providers
to provide SFC. The programmable switch has memory to
store states and programmable ASICs to apply programming
abstractions with which a user specifies its own packet pro-
cessing logic. Typical NFs have been proved implementable on
programmable switches, such as load balancer, firewall, VPN,
gateway, and rate limiters[10–14] in lightweight deployment.

We propose that SFC can also be implemented on pro-
grammable switches, which could inherit the advantages of
flexibility from the software-based solutions, and also over-

Wenfei Wu is the corresponding author.

come the weakness of inefficiency, server resource cost, and
distributed management.

We design a solution named SFP for cloud tenant SFC
provision on programmable switches. SFP has a data plane and
a control plane. The data plane is in charge of executing each
tenant’s SFC using shared programmable switch chips and the
control plane is in charge of coordinating multiple tenants’
SFCs efficiently concerned with limited switch resources.

In the data plane, NFs are pre-installed on the switch as
physical NFs that are statically set up when the switch boots
up. Tenant’s SFCs are viewed as logical NFs, which can arrive
and leave dynamically. When a logical SFC is installed to
the physical ones, each logical NF’s configuration is copied
to the physical NF with an extra packet classifier to identify
tenant traffic. When the SFC’s NFs are in a different order with
the ones on the switch, traffic would be recirculated for more
than once so as to complement missing NFs in the previous
pass. Such virtualization overcomes the logic/performance
isolation of multi-tenant SFCs on a shared physical static
switch pipeline.

In the control plane, SFP solves the problem of resource-
efficient NF placement on switch pipelines. The NF placement
is formulated as an Integer Program (IP), where the objective
is to place more SFCs to the switch (so as to save more
computation resources on servers) with the constraints on
various resources (switch memory, stages, etc.) and the chain
requirements. Significantly, SFP overcomes the challenge of
formulating the joint placement of both physical NFs and
logical NFs, which could find the optimal goal compared with
placing them separately. We further relax the IP solutions
to linear programming with random rounding, which can be
solved in polynomial time.

We prototype SFP and conduct experiments on testbed and
by simulation. The evaluation shows that SFP’s data plane
can serve SFC with high throughput and low latency (around
340ns), and the virtualization mechanism makes the physical
pipeline successfully host multiple logical SFCs. Moreover,
the SFC to pipeline placement algorithm could significantly
save computation resources and be run in acceptable time. In
this paper, we make the following contributions.

1) a switch data plane that can load static physical NFs and
host diverse dynamic SFCs,

2) a control plane that jointly optimizes the physical and
logical NF placement, achieving efficient switch re-



source usage and significant offloading,
3) a prototype and corresponding experiments to show

SFP’s good properties of offloading, scalability, and
runtime update support.

II. BACKGROUND

A. Motivation and Goal

Opportunities from Programmable Switches. The
progress in programmable switch gives new opportunities to
SFC provision. The programmable switches have memory to
store persistent states (whose life time is longer than each
individual packet) and can load user-specified packet process-
ing logic. Thus, several typical NFs can be implemented on
programmable switches. Recently, researchers have proposed
NFs like load balancer, rate limiter, cache, firewall [10–13, 15].

The packet processing circuit on the switch is a pipeline
of several stages (12 physical stages in Tofino). Each stage
is composed of necessary resources to implement processing
logics, i.e., match-action units (MAUs). The packet processing
program is organized similarly, with a match field to classify
packets and an action field to process the packet and the switch
memory state. Such organization format is analogous to the
behavior model presented in NF development[16]. So it shows
the capacity to migrate more NFs from servers to switches.

Based on the switch hardware, P4 language[17] comes up
with platform independent abstractions to describe core pro-
cessing logic of these functions and some other work provides
opportunities to combine these P4-based implementations to
generate SFCs on switches[18, 19].

Advantages of Switch-based SFC Provision. Compared
with the hardware-based SFC provision solutions and the
software-based ones, switch-based solutions have their unique
advantages.

Hardware-based solutions usually have the complexity of
deployment, asset management, and load balancing. Because
a hardware device can only be placed in the fixed location
in the network and all traffic must be routed to that fixed
point. Software-based solutions can place an NF on any server,
and the operation is to copy the software and boot it up,
simpler than hardware (re)wiring. Switch-based solutions can
inherit this flexibility because all servers are attached to Top-
Of-Rack (TOR) switches, and these TOR switches (as well
as other switches) provide equal flexibility in NF deployment
than software NFs on servers.

Software-based solutions usually need to consume compu-
tation resources (CPU, memory, bus, and network) on servers
to support the packet processing. While in clouds, these
resources should have been sold to customers to gain revenue.
To make things worse, the computation capability of servers
is usually two orders of magnitude smaller than hardware
ASICs (application specific integrated circuits)[20], causing
more significant resource cost.

The recent programmable switches have computation circuit
that could process packets at the speed of several tera-bits
per second (e.g., 3.2Tbps backplane speed in Tofino switch),

Web Server

NFNF

Inbound 
Traffic

Switch

Software Path
P4 Path

Fig. 1: NF Processing Traffic

and offloading packet processing to the switch is promising to
avoid the server resource overhead. As Fig. 1 shows, software-
based solutions will direct inbound traffic between switch and
NF servers and finally send to the web server. In contrast,
P4-based solutions will mainly go through the switch, which
reduces latency and ensures high throughput due to high
processing capability of the switch.

Goal. In this paper, our goal is to build an SFC provision
solution for cloud tenants. We name our system SFP. SFP is
expected to satisfy the following requirements.

• R1: Supporting SFC Deployment. While individual
NFs have been invented by the research and industry
community, SFP needs to devise the SFC placement
mechanism, including placing each NF and direct traffic
through them. (Fig. 1)

• R2: Supporting Multi-tenancy. The SFCs vary from
different tenants. They all need to be placed on the same
physical pipeline. More importantly, different tenants
should maintain isolation in terms of traffic, performance,
resource, and NF behavior.

• R3: Supporting Dynamic SFC Deployment. Tenants
may join and leave, and their SFC should be correspond-
ingly allocated and deallocated.

• R4: Performance. SFP should serve tenant traffic with
the same (or better) performance in terms of throughput
and latency.

• R5: Low overhead. SFP should be able to support
reasonable tenants’ SFCs within the current switch re-
sources.

B. Preliminaries of P4-based NFs

To deploy software NFs in programmable P4 switches, we
first introduce the basic components for composing a basic P4
program.

Structures of a P4 Program. As aforementioned, a P4 pro-
gram is currently written in packet-driven forwarding model,
which records how the inbound packets are processed by the
pipeline (ingress and egress) in the format of match-actions
tables (MATs). Each packet is decomposed to custom-defined
header fields and payload with additional fields to store per-
packet metadata. Match-action table (MAT) would perform
lookups of header fields and apply the user-defined actions



1 control ingress {
2 if (valid(tcp) or valid(udp)) {
3 apply(tab_firewall); // firewall
4 apply(tab_classifier); // traffic classifier
5 apply(tab_lb) { // load balancer
6 miss {
7 apply(tab_lbhash);
8 apply(tab_lbselect);
9 }

10 }
11 apply(tab_router); // router
12 }
13 }

Fig. 2: Control Flow of SFC Example

mainly to packet headers. The interconnections between MATs
are organized by the control flow primitives.

P4-based NF/SFC Example. Some work[10–13, 21] has
justified the feasibility to deploy various types of NFs in P4
switches. To apply an SFC in P4 switches, we should chain
individual NF MATs in the program since P4 switches could
only run one program at one time. Fortunately, P4 primitives
naturally support flexible control flow. Assume we have an
SFC containing four sequential NFs – firewall, traffic classifier,
load balancer, and router. Fig. 2 shows how we chain them
together in one P4 program. As shown, only tcp or udp packets
will be processed by the SFC, and the NFs are applied in
sequence in the ingress pipeline. Looking at the NFs, the
firewall, the traffic classifier and the router are all described
using one MAT, whereas the load balancer contains two more
MATs. ‘tab lb’ reads header fields and looks up the IP address
of the server that users specify in rules. Otherwise, if no
rule is matched, it will calculate the hash value through table
‘tab lbhash’ and determine the IP address from address pools
through table ‘tab lbseclect’.

Applying P4 Programs to Switch Pipelines. As afore-
mentioned, a P4 program is logically composed of several
match-action tables. To install these tables in switch chips,
P4-supported switch vendors enable the programmability atop
traditional packet processing pipelines, which best conforms
to the structure of a P4 program. In detail, each physical stage
of the pipeline is designed as Match-Action Units (MAUs)
containing dedicated hardware resources, mainly including
SRAM and TCAM to store the match-action tables or states
and ALUs to execute the actions. To ensure resource efficiency,
the switch is likely to put down multiple orthogonal match-
actions tables within one MAU if those tables have no read or
write dependency to each other. Otherwise, tables would be
applied to continuous physical stages by default. For flexibility,
the switch vendors provide APIs for users to customize table-
stage affiliations. if-else conditions within the program are
performed by gateway tables from MAUs so that different
conditions can index separate match-action tables to apply.

III. OVERVIEW

Assumptions. In the design, we make the following as-
sumptions. First, tenant traffic can be classified by header

fields. In typical virtual network construction, tenants’ traffic
is isolated by protocols such as VLAN, VxLAN, GRE, etc.,
or even IP subnet, and these protocol headers can be parsed
and recognized by programmable switches. In this paper, we
uniformly call these header fields tenant ID. Second, the
types of NFs are fixed, and there is a limited number of them.
As a service from the provider to the tenants, the provider pre-
defines a few NFs, and the tenants make selection, chaining,
and configurations. While the types of NFs can increase with
long-term evolvement, we regard the types of NFs at each
deployment cycle (a few days) to be static and fixed.

Architecture. SFP consists of a data plane and a control
plane. The data plane is in charge of running SFCs. The data
plane would pre-install a few NFs of existing types, called
physical NFs, each on one stage. If one NF spans multiple
stages, it is viewed as several sub-NFs. Each physical NF is
almost the same as the P4-based NF program above, except
that the physical NFs have a tenant traffic classifier before
its NF logic. When a logical NF from SFC is offloaded to
the physical one, the NF configuration (typical switch rules)
is copied with tenant ID match at the beginning of each NF
rule. (Challenge 1) The data plane overcomes the challenge
of placing diverse dynamic SFCs onto the static physical
pipelines, where a logical SFC may have a different order
from the physical NF order. Once such SFC needs to be
installed, the tenant traffic would be guided to traverse the
physical pipeline multiple times (by the last hop of each pass
recirculating the traffic).

The control plane of SFP solves the problem of placing
physical NFs on stages and placing logical SFCs onto the
physical pipeline. It uses integer programming (IP) to formu-
late the placement and resource constraints with the objective
of offloading more tenant traffic. SFP also relaxes the IP
problem to linear programming, which outputs approximate
results with higher efficiency. The control plane placement
algorithm additionally supports dynamic SFC runtime update,
i.e., deleting inactive tenant SFCs and installing new ones to
the optimal location without rebooting the device. (Challenge
2) The control plane overcomes the challenge of jointly
placing the physical NFs and the logical NFs. It solves this
challenge by introducing placement variables and carefully
justifying the placement affiliation between variables within
the IP model.

IV. SFC VIRTUALIZATION IN DATA PLANE

Install Physical NFs. SFP pre-installs NFs on the switch
pipeline. These NFs are called physical NFs, and in §V we
would elaborate the selection of physical NFs. Each NF is
placed in one stage and reserves a piece of switch resource
(e.g., register, TCAM) which can host runtime states and
rules. Each NF is implemented almost the same as the P4
implementation above, except for two changes. First, each
physical NF has a default rule “No-Ops”, not processing
packets but forwarding them to the next stage. Second, each
physical NF’s match block is added with two fields, one to



TC FW LB

Pipeline

SFC1

SFC2

stage0 stage1 stage2

Match Action Table

match action
ip4.srcAddrtenant ID

modify_field(…); recirculate();

modify_field(ip4.dstAddr, 10.0.0.14);1 10.0.10.0/24

2 192.168.10.0/24

2

…

…

…
…

192.168.20.0/24 modify_field(…); recirculate();

pass

1

1

1

Fig. 3: A Toy Example of SFC Placement in a 3-stage Switch

match tenant ID and one to match recirculation pass. The
pass is in the packet metadata.

NFs in the last stage is specially crafted. All their actions
are added with an extra argument — REC, and the action is
appended with two pieces of logic: (1) recirculate (or not) the
packet according to the argument, and (2) increase the pass
by one.

(De)allocate Logical NFs. NFs in an SFC are viewed as
logical NFs. When allocating an SFC to the physical pipeline,
its NFs are sequentially assigned to physical NFs; if one pass
of the pipeline cannot accommodate all NFs (due to SFC
length or NF orders), the SFC is “folded” and get into the
pipeline in the next pass.

In details of logical-to-physical assignment, SFP maintains
a variable to record the pass traversing the pipeline, named
currPass. Starting from the first NFs in the SFC and the
first stage in the pipeline, SFP find a matching pair in SFC
and the pipeline with the same NF type, and copied the logical
NFs’ configuration to the physical NF with two extra changes
in the match block: matching the tenant ID with the SFC’s
owner and pass with the currPass. If the SFC cannot be
completely allocated to the pipeline, the last allocated NF in
the current pass are configured with the REC argument in its
rules to be set; and currPass is increased by one, and SFP
proceeds to the next pass to assign the remaining SFC NFs
from the beginning of the pipeline.

When a tenant leaves the system, all its SFC NF rules are
deleted from the switch, and the switch resources (rule entries,
memory, and backplane processing rate) are released, and new
SFCs can be allocated. (More details are stated in §V-E.)

Example. As an example, Fig. 3 shows that the current
physical pipeline (with 3 stages) has been set up with several
physical NFs, each in a stage and of a specific type (e.g.,
firewall (FW), traffic classifier (TC), load balancer (LB)). SFC
1, with NFs following the order of TC, FW, LB, can be
sequentially applied to the physical pipeline. But SFC 2, with

TABLE I: Symbols Used in Model

Symbol Type Explanation
i/I index/const the i-th/total number of NF type(s)
j/Jl index/const the j-th/total number of NFs in an SFC (l)
k/K index/const the k-th/total number of stages in the switch

pipeline
l/L index/const the l-th/total number of SFCs
xik var indicates whether network function of type i is

implemented in the k-th stage
zijkl var indicates whether the j-th function box of service

chain l is of type i and implemented on stage k
djl der. var indicates whether j-th box of chain l is deployed
gjl derived

var
the stage index where the j-th box in chain l is
deployed

sl derived
var

indicates the maximal stage where the chain l is
implemented, which is also the stage of the last
box of chain l.

Rl der. var recirculation times for chain l
b const bit width of each rule
B const number of memory blocks available in each stage
C const bandwidth capacity of the switch chip
E const memory in a switch is assigned on a block basis

with uniform size of E
S const number of physical stages in the switch
fjl const the type of j-th function box in service chain l
Fjl const the number of rules of box j in chain l
Tl const the bandwidth requirement for service chain l

NFs of FW, LB, TC needs to be assigned in two passes, in
the first pass, FW, LB can be assigned, and in the second
pass, TC is further assigned; LB is the last hop of the first
pass and is configured to recirculate the packet. In the match-
action table of the LB in SFC 2, the “tenant ID” shows the
virtualization of one physical NF hosting multiple logical ones,
and the “recirculation” in the action is used by the last hop to
redirect the packet to the beginning of the pipeline.

V. SFC PLACEMENT IN CONTROL PLANE

The control plane is in charge of placing multiple SFCs into
the physical pipeline. A proper placement algorithm would
improve the resource utilization of the switch.

A. Problem Formulation and Solution

Mapping a logical graph/chain to a physical topology has
been widely studied in networking [5, 22], and the method-
ology has been used in the management of public cloud, big
data, and machine learning.

SFP solves a more complicated scenario: the allocation
is two-level. The physical NFs need to be pre-allocated to
the pipeline, and the logical NFs need to be allocated to
the physical NFs. If the two-level allocation is considered
separately, it is challenging to guarantee global optimality.
SFP formulates the NF placement problem as an Integer
Programming problem, with special constraints to consistently
allocate both physical NFs and logical NFs. The symbols and
notations in the formulation are in Table I.

Physical Pipeline. There are S stages in physical pipeline.
Each stage has the memory of size B. Physical NFs need to be
pre-allocated to the pipeline before logical SFCs. We assume
each physical NF would reserve a piece of memory, which



can install rules of size b in the MAU; and thus, there are
B/b entries available in each NF.

Logical SFC. Each NF has a type (e.g, load balancer,
firewall), and types are indexed by i ranging in [1, I]. Each
SFC is modeled as a tuple of traffic and a list of NFs. For the
l-th SFC, the traffic is denoted as Tl, and the j-th NF on the
chain l is of type fjl and is configured with Fjl entries.

Formulating Recirculation. Assume the traffic can be
recirculated several times, we would alternatively view the
pipeline as a “virtual” pipeline of K stages (K is a multiple
of S), with the constraints of the j-th stage and the (j + S)-
th stage shared the resource and NF placement constraints
(1 ≤ j, (j + S) ≤ K). The indices of stages in the following
description are in terms of the location in the virtual pipeline.
In §VI, we would describe how to decide the recirculation
times.

Variables for Placement. We use xik to indicate a type-i
NF is implemented on stage k, and zijkl to indicate whether
the j-th NF on the l-th SFC is of type i “and” placed in stage
k.

xik =

{
1, if NF of type i is implemented in stage k,
0, otherwise.

zijkl =

 1, if SFC l’s j-th box is of type i
and allocated on stage k,

0, otherwise.

We derive a few variables to simplify the description. djl
describes whether the j-th NF of chain l is deployed:

djl =
∑
i,k

zijkl,∀j, l.

gjl indicates the stage index where the j-th NF of the l-th SFC
is placed:

gjl =
∑
i,k

zijkl × k.

The largest stage index sl of an SFC l is the stage index of
last box on the chain.

sl = gj=Jl,l.

The traffic on the l-th SFC would be recirculated for Rl times:

Rl = d
sl

Smax
e − 1,∀l.

Note that if an SFC is not placed on the pipeline, sl would
be 0 and Rl would be -1.

Problem Formalization. Using the aforementioned denota-
tions, we formalize SFP placement as an optimization problem
whose objective is to offload as much traffic processing as
possible, which is proportional to the traffic dj=∗,l and the
length of the chain Jl.

Objective:

max
∑
l

dj=∗,l × Tl × Jl. (1)

Subject to:

xik ∈ {0, 1},∀i, k (2)
zijkl ∈ {0, 1},∀l, k, i, j (3)∑

k

xik ≥ 1,∀i (4)

djl ≤ 1,∀j, l (5)∑
i,k

zijkl × i = fjl × djl,∀j, l (6)

dj=1,l = dj=2,l = · · · = dj=Jl,l,∀l (7)
gj=1,l ≤ gj=2,l − djl ≤ · · · ≤ gj=Jl,l − djl ∗ (Jl − 1) (8)

zijkl ≤ xik,∀i, j, k, l (9)
xik = xi,k+S ,∀i, 1 ≤ k, k + S ≤ K (10)∑

i

⌈
K∑

k=s+nS

∑
j,l

(zijkl × Fjl × b)/E

⌉
≤ B (11)∑

l

(Rl + 1)× Tl ≤ C (12)

We summarize the constraints as follows and elaborate the
details in the Appendix:
• placement constraints that describe correct and proper

multiple-SFC placement. (2), (3), (4) and (5) together
determine the physical/logical NF placement. (6), (7) and
(8) ensure the placement compliance with NF type and
order.

• consistency constraints including (9) to ensure consis-
tency between logical and physical placement and (10) to
ensure consistency between virtual and physical stages.

• memory constraint (11) that describes the coloration
between memory utilization and hardware limitations.

• processing capacity constraint (12) that describes both
inter-SFC and intra-SFC contention in switch backplane
bandwidth.

Linearization. The Equation (11) above contains rounding
functions. However, rounding functions are not well dealt
with in IP solver. Therefore, we transform them into linear
constraints. For an expression dexpe, we define a new integer
variable Y = dexpe and add constraints Y ∈ Z and Y − 1 <
exp ≤ Y . In SFP, this transformation adds (i × Smax + j)
variables. Since IP cannot allow strict inequalities, we further
derive the constraints to Y ∈ Z and Y − 1 + ε ≤ exp ≤ Y
for ε→ 0+ by adding a very small positive number.

B. Approximation

Integer programming is an NP-hard problem, and current
solvers cannot find the solution quickly once the problem
scale is too large. We use randomized rounding method to
find approximate solutions efficiently. 1

1While the SFC placement problem is a subset of the IP problem, it is
still NP hard. In one special scenario, all SFCs are of length one, and the
physical pipeline has two stages with the same memory space; placing the
SFC is equivalent to a bin-packing problem, which is NP hard. Thus, the SFC
placement problem is NP hard.



Algorithm 1 SFC Placement with Approximation
Input: constants in TABLE I, recirculation times R
Output: variables x, z

1: r = 0;
2: for r ≤ R do
3: Relax vars();
4: LP ();
5: while not verified do
6: Round vars();
7: x′, z′ = V erify vars();
8: end while
9: if result is optimal then

10: x = x′; z = z′;
11: end if
12: r = r + 1;
13: end for

First, the integer programming problem (IP) can be relaxed
to linear programming (LP), where the integer variables are
relaxed to real numbers in the same range. And the LP problem
is solved with the variable in real number domain.

Second, the integer variables in IP (which are real numbers
in LP) are rounded to nearby integers with probability. For
example, a value of X.Y (X is integer and Y is decimal)
is rounded to X with probability 1 − Y and to X + 1 with
probability Y .

Finally, the rounded variables are put to the original IP
problems to check with the constraints. If the rounded vari-
ables cannot satisfy the constraints, the algorithm will strip
one SFC that requires most resource but least bandwidth
(Equation 13) and go back to the second step for another trial;
otherwise, rounded results are output. Randomized rounding
can guarantee the expected result of each rounding step to
be the optimal (i.e., E(Objective with rounded variable) =
Objective of LP).

C. Overall Algorithm

Algorithm 1 shows the overall algorithm of SFC placement.
The algorithm tries different recirculation times within a
reasonable range (we tried 0 to R). Each trail formulates
the IP problem as in §V-A, relaxes the variables in function
Relax vars(), and solves it with LP relaxation in function
LP (). After getting all real value for the variables, we need
to start a new loop to round the variables from real numbers
to integers (function Round vars()) until the rounding result
is verified to satisfy the constraints (function V erify vars())
and get the result. The optimal result is selected between trials
as the final output.

D. Greedy Algorithm as Baseline

We construct another heuristic algorithm as a baseline in
the evaluation. The heuristic algorithm is a greedy algorithm
that can execute quickly. Intuitively, we prefer offloading SFCs
whose throughput (objective) is high but resource occupancy
is small (less cost). Therefore, we define a metric for each
SFC:

Metric =
Tl∑
Jl × Fjl

. (13)

Algorithm 2 Greedy Algorithm
Input: constants in TABLE I, recirculation times R
Output: variables x, z

1: ordered sfcs = Order SFCs();
2: for sfc ∈ ordered sfcs do
3: Try placement();
4: Resource recompute();
5: end for

The outline of greedy algorithm is shown in Algorithm 2. It
first sorts all SFC candidates with the metric in Equation 13.
SFCs with higher metric have priority to try the placement
(function Try placement()). In detail, given an SFC, the
algorithm would place the NFs in the chain one by one. To
install one NF, the algorithm always finds the nearest next
physical NFs with enough resource capability. If failed, it
will require new physical NF installation in the nearest next
stages (if the resource allows) and then settle down the NF.
If the placement succeeds, function Resource recompute()
is invoked to compute the remaining resources. The greedy
algorithm cannot always get an optimal replacement since it
merely reflects on the total number of rules/entries without
considering larger search spaces such as NF rule distribution.

E. Runtime Update
SFCs can dynamically arrive and leave. When SFCs ar-

rive/leave, SFP should modify the data plane (i.e., the rules
in match-action tables) to reconcile all SFCs in the switch.
In detail, SFP deletes old SFCs by removing their rules and
installs new ones by adding their rules to the corresponding
tables assigned by the control plane. If new global tenant
IDs are assigned to existing SFCs, the rules belonging to those
affected ones should be modified as well.

To target the runtime update, the control plane needs to
update the switch resource usage when SFC leaves, maintain
the SFCs who do not leave in previous placement, and try to
place new SFCs to the pipeline with newly released resources.

The new SFC placement uses the same algorithm above,
with the updated network topology and resource availability.
The result may not be global optimal since it only considers
incremental SFCs. To this end, we can set up a threshold. Once
the distance between the current configuration and the optimal
one exceeds the threshold, the whole SFCs and pipeline
would be automatically re-configured. In such case, extensive
changes of the rules are desired to apply in the data plane,
which incurs high overhead or possibly a reboot of the switch.

If the tenants require to adjust their SFCs (e.g., the process-
ing order or the type of the internal NFs), we regard them
as SFC departure and arrival, and apply the aforementioned
principles.

VI. EVALUATION

Our evaluation of SFP answers the following key questions:
1) To what extent can SFP improve the SFC processing

throughput and latency compared to software SFC de-
ployed in servers with DPDK? (§VI-B)



2) What throughput and resource utilization can SFP
achieve in various SFC provision scenarios? Would the
recirculation of SFCs improve the performance or incur
latency overhead? (§VI-C)

3) What if we attempt to early terminate SFP IP solver
rather than waiting for a full stop? How is the interme-
diate result approaching the optimal solution? (§VI-C)

4) How much performance loss would linear relaxation
of SFP and greedy algorithm cause compared to IP
approach? (§VI-C)

5) How well does runtime update work? What impact
would it have on the objective given that we replace
partial SFCs? (§VI-D)

A. Experiment Settings

Implementation. We implement SFP control plane place-
ment solver in Python, involving 1.5k lines of codes. We use a
well-known powerful optimization solver Gurobi[23] to handle
integer and linear programming problems in our algorithms.
We implement 4 NF programs (firewall, load balancer, traffic
classifier, and router) in P4 language[24] as a proof-of-concept.

Testbed. Our testbed consists of a 32-port Tofino switch,
each port with 100Gbps bandwidth and three mid-range
servers (4 Intel(R) Xeon(R) Gold 5120T CPU @ 2.20GHz
16 cores, 192RAM with Ubuntu 18.04, 100Gbps Mellanox
ConnectX-5 NICs, 22TB disk) that run the client, server and
SFCs respectively.

Dataset. We synthesize the SFC dataset to evaluate SFP
control plane algorithms. We observe that a top-of-rack switch
that connects a rack of servers that could have tens of SFCs.
Other principal parameters are implied by some work[25, 26].
We add randomization to generate five sets of SFC data for
each experiment in §VI-C. In detail, each SFC randomly
chooses different NFs to compose the chain, and the number
of rules for each NF uniformly ranges from 100 to 2100;
the bandwidth requirement of each NF follows the long-
tail distribution. In each experiment, we use synthetic traffic
workload and trace[27] to measure the performance.

Baseline. In the data plane, we have SFP’s P4-based
implementation comparable to the state-of-the-art software
solutions[1]. And we choose four basic NFs(firewall, load
balancer, traffic classifier, and router) with DPDK acceleration
as the baseline. In the control plane, we compare several
placement algorithms: SFP, SFP without consolidation (i.e.,
using Equation 12 instead of 11), ILP, and greedy algorithm.

Metrics. In each experiment, we measure the throughput
and the latency to show SFP’s QoS. And we measure the
execution time of SFP algorithms to evaluate their efficiency.

B. SFC Performance and Overhead

We deploy 4 NFs on both P4 switch and server, and send
traffic at 100Gbps, with packet size varying from 64 to 1500
Bytes that cover most packet size[27]. In the DPDK baseline,
16 (of 56) CPU cores are used to run the client, SFCs, and
the receiver, and DPDK master uses one extra core. In each

64 128 256 512 1024 1500
Packet Length (B)

20

40

60

80

100

Th
ro

ug
hp

ut
 (G

bp
s)

DPDK
SFP

Fig. 4: Throughput Comparison between SFP and Software SFC
Deployment

DPDK experiment, the average memory utilization of SFC is
722 MB, and the CPU utilization is 30.35% (17/56).

Fig. 4 shows the processing throughput of SFP and DPDK-
based SFC. SFP always outperforms DPDK for packets of any
size(from 64B to 1500B). SFP keeps saturating the 100Gbps
bandwidth bound by the sender, whereas DPDK method can
reach 100Gbps only when the packet size is increased large
enough as 1500B or more. In the worst case of 64 Byte
packets, SFP performs at least 10 times better than DPDK
in terms of packet processing rate.

Fig. 5 shows the processing latency of SFP and DPDK
SFC. With various packet sizes, the average latency of SFP
and DPDK is 341ns and 1151ns respectively. SFP is 0.3X to
DPDK. In practical systems, SFP would have more significant
advantages in RTT because SFP processes traffic “on-path” in
the switch instead of routing the packets to NF servers with
more hops (shown in Fig. 1).

C. SFC Placement Performance

We configure the switch with 8 stages and 20 memory
blocks (each for an NF) in each stage, and each block has 1000
entries of rules. We configure the switch backplane speed to
be 400Gbps in the control plane model.

Impact of the Number of SFCs. We set the types of
NFs to be 10, the average chain length to be 5, and the
maximum recirculation time to be 3. We tune the number of
SFCs L from 10 to 50, and measure the throughput, block
utilization, and entry utilization of SFP and SFP without
consolidation (‘Baseline’). Fig. 6a shows block utilization and
throughput varying in L. (1) With a small number of SFCs
(about 15), blocks in both algorithms are quickly occupied.
With L increasing, the block utilization is close to the upper
bound of 20 and does not show a significant increase. (2) But
the throughput increases proportionally with L because larger
L allows for more candidates to choose to place on the switch,
and SFCs with higher throughput would be finally selected. (3)
SFP always has slightly higher throughput than SFP without
consolidation but may consume a little more blocks, e.g., when
L = 30, the throughput is 247.1 Gbps v.s. 227.0 Gbps, and
the block utilization is 20 and 19.7 for both algorithms.

Observing the entry utilization in Fig. 6, SFP without NF
consolidation has a lower entry utilization because there are
internal fragments within each block. Such under-utilization of



64 128 256 512 1024 1500
Packet Length (B)

0

200

400

600

800

1000

1200

1400
La

te
nc

y 
(n

s)

DPDK
SFP
SFP-Recir

Fig. 5: Processing Latency of SFP and Soft-
ware SFC

10 15 20 25 30 35 40 45 50
Number of SFCs (L)

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput-SFP
Block Util.-SFP
Throughput-Baseline
Block Util.-Baseline

12

14

16

18

20

Bl
oc

k 
Ut

iliz
at

io
n

(a) Block Utilization and Throughput

10 15 20 25 30 35 40 45 50
Number of SFCs (L)

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput-SFP
Entry Util.-SFP
Throughput-Baseline
Entry Util.-Baseline 0.4

0.5

0.6

0.7

0.8

0.9

En
try

 U
til

iza
tio

n

(b) Entry Utilization and Throughput

Fig. 6: Throughput and Resource Utilization Varying the Number of SFC Candidates

10 20 30 40 50
Recirculation Times (K)

134

136

138

140

142

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput-SFP
Block Util.-SFP
Throughput-Baseline
Block Util.-Baseline

17.5

18.0

18.5

19.0

19.5
Bl

oc
k 

Ut
iliz

at
io

n

(a) Block Utilization and Throughput

10 20 30 40 50
Recirculation Times (K)

134

136

138

140

142

Th
ro

ug
hp

ut
 (G

bp
s)

Throughput-SFP
Entry Util.-SFP
Throughput-Baseline
Entry Util.-Baseline 0.60

0.65

0.70

0.75

0.80

En
try

 U
til

iza
tio

n

(b) Entry Utilization and Throughput

Fig. 7: Throughput and Resource Utilization Varying the Recirculation Times

10 15 20 25 30 35 40 45 50
Number of SFCs (L)

100

101

102

103

Ru
nt

im
e 

(M
in

ut
e)

SFP-IP
SFP-Appro.

Fig. 8: SFP Runtime Varying the Number of
SFCs

switch memory leads to a slightly lower throughput compared
with SFP.

Impact of Recirculation Times. We set the number of
candidate SFC to 152, each with a length of 8 NFs chosen
randomly from 10 NF types. We tune the number of stages
in the virtual pipeline, from 8 to 56 (i.e., 0 to 6 times of
recirculation). As shown in Fig. 7, we observe that (1) one time
of recirculation can improve the throughput (i.e., from 138.3
Gbps and 133.6 Gbps to 142.0 Gbps and 137.6 Gbps for both
algorithms), but more than one recirculation cannot further
improve the throughput, because the one-time recirculation has
already enlarged the search space of candidate SFCs enough to
saturate the backplane capacity. (2) Block utilization is roughly
the same for both algorithms, but SFP achieves better entry
utilization similar to Fig. 6.

However, allowing recirculation could raise some concerns
about the processing latency. To manifest the impact on
latency, we use ‘recirculate’ primitive in P4 to redirect the
packets to go through the ingress pipelines repeatedly. In each
pipeline pass-through, we apply only one NF to process the
packets so that the whole packet processing logic is the same
as in §VI-B. We measure the processing latency and show
the result as ‘SFP-Recir’ in Fig. 5. It shows that compared
with SFP, three recirculations within 4-NF SFC only incur 35
ns overhead. And we conclude that the processing latency is
substantially dependent on the processing complexity of the
whole SFC but not the recirculation times.

Comparison between Placement Algorithms. Fig. 8
shows the execution time of SFP integer programming (‘SFP-

2We apply small number of candidate SFC to eliminate the contention
between SFCs and manifest the impact of recirculation times.

IP’) and SFP IP with linear relaxation (‘SFP-Appro.’). The
switch has 8 stages, the recirculation time is allowed to be 2,
and the average chain length is 5. We tune the number of SFCs
and measure the execution time that both algorithms need. We
observe that the SFP-IP approach shows a trend of increasing
faster than exponentiation, and SFP-Appro. (with relaxation)
shows a polynomial time increase where finding a solution for
50 SFCs only takes 70s.

Fig. 9 shows the throughput and resource utilization of
SFP-IP, and we can tune the solver to early terminate the
computation with the current optimal solution. There are 25
SFCs in the experiment. With the shortest runtime limit (5s),
the algorithm cannot get any solutions and its performance is
0. Given a little more time (10s), the throughput approaches
approximately optimal and keeps going up slightly as the
time lasts, and the throughput reaches the optimal threshold
at 30s. Compared with SFP-Appro. that gets the result within
35.0 seconds, using early termination in IP is another possible
approach to efficiently get a near-optimal result.

Fig. 10 shows the objective throughput of SFP-IP, SFP-
Appro., and the greedy algorithm. In the setting of 8 stages, 2
recirculation times, 10 NF types, and average chain length of
5, the SFP-IP almost saturates the switch capacity with about
50 SFCs. The SFP-Appro. and the greedy algorithm show
the same increasing trend when SFC is fewer than 40, but
cannot show a saturation compared to the IP approach (e.g.,
398 Gbps v.s. 377 Gbps v.s. 367 Gbps for 60 SFCs). And
SFP-Appro. outperforms the greedy algorithm. In practical
use, SFP-Appro. is efficient enough to output a near-optimal
solution, and greedy algorithm can be considered when the
scenario needs prompt deployment but less optimality.



10 20 30 40 50 60
Runtime Limit(s)

0

100

200

300

400
Th

ro
ug

hp
ut

 (G
bp

s)

Throughput
Entry Util. 0.0

0.2

0.4

0.6

0.8

En
try

 U
til

iza
tio

n

Fig. 9: Throughput and Resource Utilization
Varying Runtime Limit

10 20 30 40 50 60 70 80
Number of SFCs (L)

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (G

bp
s)

SFP-IP
SFP-Appro.
SFP-Greedy

Fig. 10: Throughput of Greedy Algorithm
Compared with IP

0.2 0.4 0.6 0.8 1.0
Drop Rate

394

395

396

397

398

399

400

Th
ro

ug
hp

ut
 (G

bp
s)

Origin
Runtime Update

Fig. 11: Throughput of Runtime Update
Compared to That Before Update

D. Runtime Update

We run experiments with 8 stages, 2 recirculation times, 5
average chain length, 10 NF types, 20 allocated SFCs and
50 SFC candidates. We allocate SFCs first, and then drop
the allocated ones with a drop rate, and choose SFCs from
candidates to fill in the switch pipeline again. Fig. 11 shows the
throughput after the update compared with the ones before the
update (‘Origin’). We observe that the throughput has a very
slight increase with higher drop rate, i.e., from 394.0 with 0.1
drop rate to 399.8 with 1.0 drop rate. The high saturation
results from the extensive possible combinations from 50
SFCs, and a nearly saturated result always exists. The reason
for the slight increase is that dropping more old SFCs makes
more available resources for new SFC combination/selection,
and the more candidate combinations that can fill in the free
resource can lead the algorithm to find the one with higher
saturation.

VII. DISCUSSION

We discuss the scope of this paper as follows.
Offloadability. It is reported that most NFs are offload-

able in programmable switches[21]. The others that are not
currently available in switch pipelines will be deployed in
COTS servers as VNFs, completing the functionalities of
SFCs. However, programmable switches would entail much
more resource contention compared to commodity servers that
are prevalent in the cloud.

Branches inside SFC. Using P4 programming abstractions,
NFs are implemented in match-action tables and might be
organized by if-else control flow as directed acyclic graph
(DAG). In the programmable pipeline, dependent tables (with
read/write dependency) should be placed in continuous stages
and independent tables can be placed within the same stage.
For the sake of simplicity, we regard NFs as sequential
virtual tables where each table can be merged from different
independent tables.

Multiple-table NFs. To the best of our knowledge, SOTA
NFs [15, 28] usually consist of few big tables that define
the main processing functionality and other tables that handle
exceptions. In this paper, particularly, we assign each NF
with one big table since most tables handling the exceptions
contribute little to the resource contention.

Shared Parser/Deparser. Since programmable switches
only parse the packets before the ingress pipeline and com-

pose/deparse the packets after the egress pipeline, it is required
that different NFs should operate on the same set of packets
header fields. Fortunately, cloud traffic usually follows stan-
dard protocols.

NF States. NF states are stored in SRAM together with
MATs in switch pipelines. Hence, SFP could be further
extended to account for NF states whose size should be fixed
as well as MATs before compilation.

VIII. RELATED WORK

P4 Switch Compilation. Some works[26, 29] explore the
compilation of P4 programs to specific switch target and
present some optimizations. Lyra[19] and µP4[30] focus on
the portability problem across multiple programmable devices.
However, these works are not designed for the SFC problems,
and SFP can provide some optimizations regarding our insights
on SFC provision.

P4-accelerated Applications. Since the IC vendors enable
the programmability atop traditional switches, some works
emerge to utilize the fast switch and offload their function-
alities from end-host to in-network. [10] devises fast layer-
4 load balancing. [14, 31] propose heterogeneous gateways
to alleviate the servers. [15, 32] provide in-network cache
for large-scale storage systems. [33] performs aggregation in
switch to accelerate neural network training. [34] enables data
aggregation to accelerate data processing applications. Most
works require modifications to applications or communication
protocols. In contrast, NF or SFC deployment is transparent
to high-level applications and can be migrated from servers
to switch at low cost, making it fast applicable to most cloud
networks.

Multi-tenancy in P4. Due to limited capacity for ac-
commodating multiple P4 programs within a single switch,
software virtualization is applied to support multi-tenancy
in P4. HyperV[35], Hyper4[36], and HyperVDP[37] provide
full or partial virtualization that uses software to emulate
hardware to enable multi-programming in the exclusive data
plane. P4visor[18] presents a set of abstractions and merging
algorithms to incorporate two programs to achieve virtualiza-
tion in the data plane, which mainly involves code merging
techniques. [38] designs compile and run-time approaches
to multi-tenancy. These methods provide new directions to
deploy multi-tenancy SFCs in P4, but SFP can utilize the



correlations of individual SFCs to better optimize resource
utilization.

SFC Deployment in Programmable Switches. Recent
works propose offloading SFC to programmable switches.
[39] provides primitives to deploy SFCs in switches, but it
cannot ensure resource efficiency because it merges SFCs
in a straightforward LCS method. [40] proposes data plane
design to enable multi-tenancy in switches and other works[19,
21, 41–49] alleviate the progress of offloading SFCs to pro-
grammable switches but they lack the support for runtime
reconfiguration or multi-tenancy compared to SFP.

IX. CONCLUSION

We designed SFP, a system for cloud tenant SFC provi-
sion on programmable switches. SFP virtualizes the packet
processing pipeline to execute each tenant’s SFC using shared
programmable switch chips in the data plane, and leverages
integer programming with relaxation to place multiple tenants’
SFCs efficiently with limited switch resources in the control
plane. SFP also supports runtime update. We prototype SFP
and validate its good properties of low latency, low overhead,
high saturation, and efficient execution time.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for
their thoughtful feedback. This project is supported by Na-
tional Natural Science Foundation of China under Grant
No.61802225 and 62002019 and the Beijing Institute of Tech-
nology Research Fund Program for Young Scholars.

REFERENCES

[1] W. Zhang et al., “Opennetvm: A platform for high performance network service
chains,” in HotMiddlebox’16, 2016, pp. 26–31.

[2] C. Sun et al., “Nfp: Enabling network function parallelism in nfv,” in SIG-
COMM’17. ACM, 2017, pp. 43–56.

[3] J. Martins et al., “Clickos and the art of network function virtualization,” in
NSDI’14. USENIX Association, 2014, pp. 459–473.

[4] S. G. Kulkarni et al., “Nfvnice: Dynamic backpressure and scheduling for nfv
service chains,” in SIGCOMM’17. ACM, 2017, pp. 71–84.

[5] S. Palkar et al., “E2: A framework for nfv applications,” in SOSP ’15. New York,
NY, USA: ACM, 2015, pp. 121–136.

[6] J. Hwang et al., “Netvm: high performance and flexible networking using virtu-
alization on commodity platforms,” IEEE Transactions on Network and Service
Management, vol. 12, no. 1, pp. 34–47, 2015.

[7] “https://www.alibabacloud.com/blog/the-network-architecture-and-network-
management-system-behind-this-years-double-11 595615.”

[8] F. engineering. Disaggregate: Networking recap. [Online]. Avail-
able: https://engineering.fb.com/2017/01/30/data-center-engineering/disaggregate-
networking-recap/

[9] “https://scholar.harvard.edu/srivatsan-krishnan/publications/accelerating-recurrent-
neural-networks-analytics-servers-comparison.”

[10] R. Miao et al., “Silkroad: Making stateful layer-4 load balancing fast and cheap
using switching asics,” in SIGCOMM’17. New York, NY, USA: ACM, 2017, p.
15–28.

[11] Y. He et al., “Scalable on-switch rate limiters for the cloud,” in IEEE INFOCOM
2021 - IEEE Conference on Computer Communications, 2021.

[12] R. Datta et al., “P4guard: Designing p4 based firewall,” in MILCOM 2018-2018
IEEE Military Communications Conference (MILCOM). IEEE, 2018, pp. 1–6.

[13] F. Hauser et al., “P4-ipsec: Site-to-site and host-to-site vpn with ipsec in p4-based
sdn,” IEEE Access, vol. 8, pp. 139 567–139 586, 2020.

[14] K. Qian et al., “Flexgate: High-performance heterogeneous gateway in data
centers,” in APNet ’19. New York, NY, USA: ACM, 2019, p. 36–42.

[15] X. Jin et al., “Netcache: Balancing key-value stores with fast in-network caching,”
in SOSP’ 17. New York, NY, USA: ACM, 2017, p. 121–136.

[16] H. Huang et al., “Nfd: Using behavior models to develop cross-platform network
functions,” in IEEE INFOCOM 2021 - IEEE Conference on Computer Communi-
cations, 2021.

[17] P. Bosshart et al., “P4: Programming protocol-independent packet processors,”
ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87–95, 2014.

[18] P. Zheng et al., “P4visor: Lightweight virtualization and composition primitives for
building and testing modular programs,” in CoNEXT’18, 2018, pp. 98–111.

[19] J. Gao et al., “Lyra: A cross-platform language and compiler for data plane
programming on heterogeneous asics,” in SIGCOMM’20, ser. SIGCOMM ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p. 435–450.

[20] “https://scholar.harvard.edu/srivatsan-krishnan/publications/accelerating-recurrent-
neural-networks-analytics-servers-comparison.”

[21] “Lightnf: Simplifying network function offloading in programmable networks,” in
2021 IEEE/ACM International Symposium on Quality of Service.

[22] D. Li et al., “Virtual network function placement considering resource optimiza-
tion and sfc requests in cloud datacenter,” IEEE Transactions on Parallel and
Distributed Systems, vol. 29, no. 7, pp. 1664–1677, 2018.

[23] Gurobi. [Online]. Available: https://www.gurobi.com
[24] P4. [Online]. Available: https://p4lang.github.io/p4-spec/p4-14/v1.0.4/tex/p4.pdf
[25] G. P. Katsikas et al., “Metron: NFV service chains at the true speed of the

underlying hardware,” in NSDI’18. Renton, WA: USENIX Association, 2018,
pp. 171–186.

[26] L. Jose et al., “Compiling packet programs to reconfigurable switches,” in NSDI’15.
Oakland, CA: USENIX Association, 2015, pp. 103–115.

[27] T. Benson et al., “Network traffic characteristics of data centers in the wild,” in
IMC ’10. New York, NY, USA: ACM, 2010, pp. 267–280.

[28] X. Jin et al., “Netchain: Scale-free sub-rtt coordination,” in NSDI’18. Renton,
WA: USENIX Association, Apr. 2018, pp. 35–49.

[29] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn,” in SIGCOMM ’13. New York, NY, USA: ACM,
2013, p. 99–110.

[30] H. Soni et al., “Composing dataplane programs with up4,” in SIGCOMM’20, ser.
SIGCOMM ’20. New York, NY, USA: ACM, 2020, p. 329–343.

[31] T. Pan et al., “Sailfish: Accelerating cloud-scale multi-tenant multi-service gateways
with programmable switches,” in SIGCOMM’21, ser. SIGCOMM ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 194–206.

[32] Z. Liu et al., “Distcache: Provable load balancing for large-scale storage systems
with distributed caching,” in FAST’ 19. Boston, MA: USENIX Association, Feb.
2019, pp. 143–157.

[33] C. Lao et al., “ATP: In-network aggregation for multi-tenant learning,” in NSDI’
21. USENIX Association, Apr. 2021, pp. 741–761.

[34] L. Mai et al., “Netagg: Using middleboxes for application-specific on-path aggre-
gation in data centres,” in CoNEXT’ 14. New York, NY, USA: ACM, 2014, p.
249–262.

[35] C. Zhang et al., “Hyperv: A high performance hypervisor for virtualization of the
programmable data plane,” in 2017 26th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2017, pp. 1–9.

[36] D. Hancock and J. van der Merwe, “Hyper4: Using p4 to virtualize the pro-
grammable data plane,” in CoNEXT’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 35–49.

[37] C. Zhang et al., “Hypervdp: High-performance virtualization of the programmable
data plane,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3,
pp. 556–569, 2019.

[38] T. Wang et al., “Multitenancy for fast and programmable networks in the cloud,”
in HotCloud’20. USENIX Association, Jul. 2020.

[39] X. Chen et al., “P4sc: Towards high-performance service function chain imple-
mentation on the p4-capable device,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), 2019, pp. 1–9.

[40] D. Wu et al., “Accelerated service chaining on a single switch asic,” in HotNets
’19. New York, NY, USA: ACM, 2019, p. 141–149.

[41] K. Zhang et al., “Gallium: Automated software middlebox offloading to pro-
grammable switches,” in SIGCOMM ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 283–295.

[42] N. Sultana et al., “Flightplan: Dataplane disaggregation and placement for p4
programs,” in NSDI’ 21. USENIX Association, Apr. 2021, pp. 571–592.

[43] H. Liu et al., “Sra: Switch resource aggregation for application offloading in
programmable networks,” in GLOBECOM 2020, 2020, pp. 1–6.

[44] X. Chen et al., “Speed: Resource-efficient and high-performance deployment for
data plane programs,” in ICNP’ 20, 2020, pp. 1–12.

[45] J. Ma et al., “P4sfc: Service function chain offloading with programmable
switches,” in 2020 IEEE 39th International Performance Computing and Com-
munications Conference (IPCCC), 2020, pp. 1–6.

[46] D. Moro et al., “A framework for network function decomposition and deployment,”
in 2020 16th International Conference on the Design of Reliable Communication
Networks DRCN 2020, 2020, pp. 1–6.

[47] Y. Zhou et al., “Flexmesh: Flexibly chaining network functions on programmable
data planes at runtime,” in 2020 IFIP Networking Conference, 2020, pp. 73–81.



[48] Y. Xue and Z. Zhu, “Leveraging heterogeneous nfv platforms to upgrade service
function chains in dcns,” in NetSoft’ 21, 2021, pp. 283–287.

[49] D. Moro et al., “Network function decomposition and offloading on heterogeneous
networks with programmable data planes,” IEEE Open Journal of the Communi-
cations Society, vol. 2, pp. 1874–1885, 2021.

APPENDIX

A. Appendix to Mathematical Formalization of Placement
Problem

Objective. As stated in the motivation, SFP aims to replace
the server SFCs to save computation resources (and the
overhead/cost consequently), thus SFP’s objective is to offload
as much traffic processing as possible, which is proportional
to the traffic dj=∗,l and the length of the chain Jl. So the
objective is

max
∑
l

dj=∗,l × Tl × Jl. (14)

Constraints. Placement Constraints. The variables about
physical/logical NF placement are 0 or 1, which implies
whether to place the physical/logical NF of type i in stage
k.

xik ∈ {0, 1},∀i, k. (15)

zijkl ∈ {0, 1},∀l, k, i, j. (16)

Each type of physical NF must be assigned to at least one
stage. Hence, ∑

k

xik ≥ 1,∀i. (17)

Each logical NF can be allocated to at most one stage.
Alternatively, it would be deployed in software.

djl ≤ 1,∀j, l. (18)

If a logical NF is allocated, its type should be compliant
with the actual type in the SFC (fjl).∑

i,k

zijkl × i = fjl × djl,∀j, l (19)

All or none of NFs of the same SFC should be placed
together, which implies we deploy SFC standalone in either
hardware or software.

dj=1,l = dj=2,l = · · · = dj=Jl,l,∀l (20)

NFs in an SFC should be placed in pipeline stages in order.
If the SFC is placed, it should satisfy

gj=1,l < gj=2,l < · · · < gj=Jl,l,∀l ∈ {l|djl = 1,∀j}.

If an SFC is not placed, all its NFs’ stages are zero as
following,

gj=1,l = gj=2,l = · · · = gj=Jl,l = 0,∀l ∈ {l|djl = 0,∀j}.

These two cases can be summarized as

gj=1,l ≤ gj=2,l − djl ≤ · · · ≤ gj=Jl,l − djl ∗ (Jl − 1). (21)

Consistency Constraints. There are two consistency specific
constraints in SFP. First, if a “logical” NF of a type is placed
on a stage, the “physical” NFs of the same type must be
allocated on the same physical stage.

zijkl ≤ xik,∀i, j, k, l. (22)

Second, the virtual pipeline is extended from physical
pipeline, thus, every S stages on the virtual pipeline repeat
the same physical NF placement.

xik = xi,k+S ,∀i, 1 ≤ k, k + S ≤ K. (23)

Memory Constraints. Each stage has limited memory space
to allocate NFs. And in the virtual pipeline, every S stages
share the same physical pipeline’s stage. On the k-th stage,
all type-i NFs on all chains (each consumes Fjl× b memory)

would consume d
∑K

k=s+nS

∑
j,l(zijkl×Fjl×b)
E e pages of mem-

ory. And the memory consumption on stage s (1 ≤ s ≤ S) of
all types of NFs is constrained as follows

∑
i

⌈∑K
k=s+nS

∑
j,l(zijkl × Fjl × b)
E

⌉
≤ B,

∀s ≤ S.
(24)

Note that we consolidate the configuration of same-type
NF across different SFCs into the same physical NFs, which
eliminates the internal fragment of each NF. This is a memory
efficient optimization. If consolidation across logical NFs is
not allowed, the memory constraint should be

∑
i

K∑
k=s+nS

∑
j,l

⌈
zijkl × Fjl × b

E

⌉
≤ B,

∀s ≤ S.

(25)

Processing Capacity Constraints. The total traffic traversing
the switch backplane is constrained by the backplane speed.
It’s noted that any recirculated traffic would compete with new
inbound traffic. ∑

l

(Rl + 1)× Tl ≤ C. (26)


