
HyperSFP: Fault-Tolerant Service Function Chain Provision
on Programmable Switches in Data Centers

Hongyi Huang
Tsinghua University

hhy.hongyi@outlook.com

Wenfei Wu
Peking University

wenfeiwu@pku.edu.cn

Abstract—With the cloud networks being equipped with pro-
grammable switch, Service Function Chain (SFC) provision has
started to be migrated to the switches for better performance and
manageability. In this paper, we design HyperSFP which places
multiple SFCs to a data center network (DCN). In the placement
algorithm, HyperSFP builds an integer programming (IP) model
to achieve functionality, fault tolerance, and load balance. To
support large-scale networks, HyperSFP IP model is relaxed to
two approximate approaches: Stage-Separated IP model and lin-
ear programming (LP) model. Both approaches can improve the
algorithm efficiency. HyperSFP’s data plane is designed to deploy
the active and backup NFs in the control-plane plan, and migrate
traffic from failed active NFs to its backup NFs. Our prototype
and evaluation shows that HyperSFP achieves performance gain
by implementing NFs on programmable switches, its control
plane achieves fault tolerance, load balance, and scalability, and
its data plane can handle network failures promptly.

Index Terms—NFV, SFC, fault tolerance, programmable switch

I. INTRODUCTION

Network functions (NFs) in modern clouds transparently
process tenant traffic, which provides security enhancement
or performance acceleration. A tenant’s requirements in traffic
processing, e.g., load balancing and blacklisting, would be
satisfied by chaining multiple NFs in the custom sequence,
which is named service function chaining (SFC). A recent
trend of implementing SFC as software [1]–[6] on commodity
servers, namely network function virtualization (NFV), pro-
vides beneficial features such as deployment flexibility and
management simplicity. But NFV also suffers from the low
efficiency compared with the hardware middlebox approach
(i.e., CPU v.s. ASIC).

Recent data centers have started to be empowered by pro-
grammable switches [7]–[9], which provides new opportunities
for SFC provision. The programmable switch has memory
to store persistent states, and can load and execute user
specified programs for packet processing. By implementing
NFs on programmable switches, the cloud operator achieves
both management flexibility and high-speed processing (at the
line rate). Such programmable switch-based NFs have been
proved the feasibility in examples of load balancer, firewall,
gateway, VPN and rate limiters [10]–[14].

However, data center networks (DCN) operators have been
long upset by switch failure problems [15]–[17]. With thou-

Wenfei Wu is the corresponding author.

sands of switches deployed in DCN, it is quite difficult (even
impossible) to guarantee all switches can persistently run
without errors. Commercial DCNs also occasionally report
outage (e.g., [18], [19]). If SFCs are implemented on switches,
they should also allow for fault tolerance.

In this paper, we design a switch-based SFC solution
for clouds, namely HyperSFP. HyperSFP implements fault-
tolerant SFCs on programmable switches. In the control
plane, HyperSFP places SFCs on multiple switches in the
DCN topology. The placement algorithm models an integer
programming (IP) problem, which takes fault tolerance, load
balancing, and resource availability into consideration. The IP
approach is also transformed to approximate approaches for
efficient execution. HyperSFP’s data plane is to set up SFC
instances (both active NFs and backup ones) and switching
traffic between instances in case of switch failure.

We build HyperSFP’s data plane on Tofino switches and
the controller in Python. Our evaluation demonstrates that
HyperSFP can provide SFC with fault tolerance (e.g., no
traffic compromised when there is one switch failure), the
SFC placement algorithm can be executed efficiently (about
100 seconds for 1000 custom SFCs in 96-node Fat-Tree) and
near-optimal (on average 11.4% gap to the optimal result).

II. BACKGROUND

A. SFCs on PISA Switches

Programmable switches [20] become a new platform that
can host NFs. Several NFs are ported to the programmable
switches [10], [11], [21], [22]. Typical types are ACL, firewall,
load balancer, NAT, etc. Implementing NFs on programmable
switches brings about two advantages. First, the processing
throughput can be improved to line rate. NFs on servers can
process traffic at a rate of 10X Gbps, but cloud services
could generate traffic at 1X Tbps [23]. As for programmable
switches, a single programmable pipeline can handle traffic
at 100X Gbps with its dedicated chip, and the whole switch
capacity can reach 1X Tbps. Second, switch NFs have ultra
low processing latency. It does not need to get through the
software network stack like server NFs. The per-hop latency
for switch processing is within 100X ns. In addition, the
switch NF is on-path, saving hops to the server (and to return)
compared with server NFs. Thus, the total processing latency
can be significantly reduced on switch NFs.978-1-6654-0601-7/22$31.00 © 2022 IEEE

Resource Consumption. When an NF is implemented on
PISA, it consumes two kinds of resources. The NF’s logic
is written in PISA specific language (e.g., P4 in Tofino [24]
and NPL in Trident [25]), and the code would consume
“computation resources” when compiled to the PISA chip,
which includes PHV, ALU, gateway tables and so on. A more
complex NF usually consumes more computation resources.
[26], [27]

In the runtime, NFs (on PISA) need to be configured
with runtime rules, which consume switch memories (i.e.,
SRAM and TCAM). For example, a load balancer needs to
be configured with backend servers, and a firewall needs to be
configured with ACL rules. These rules can be dynamically
changed by the controller in the runtime.

B. Cloud Switch Failures

Switch failure is not an occasional event but prevalent
in DCN [15], [17]. Switch failures could lead to network
congestion [28] and link failures, affecting users’ quality of
experience (QoE) [15], [16] and even lead to catastrophic
cloud outage [29].

When the switches are hosting SFCs, switch failures would
cause SFC unavailability, disrupting traffic processing. Al-
though routing protocols such as OSPF can rebuild the route,
the SFCs on the original (failure) path cannot be immediately
ready on the new path. Thus, it is not trivial to build an SFC
solution resilient to network failures.

C. Goal and Intuition

In this paper, our goal is to build a switch-based SFC
solution, which satisfies the following requirements. We name
our system HyperSFP.
• (R1) Performance Gain. HyperSFP implements NFs on

PISA, which is expected to inherit its advantage of high
throughput and low latency.

• (R2) Fault Tolerance. While DCN switches could suffer
from occasional failure, HyperSFP should be resistant to
switch failures, i.e., provide availability even when the
switch is down.

• (R3) Load Balance. When multiple SFCs are placed in a
topology (with multiple programmable switches), they had
better be load balanced so that the system can be resilient
to bursty workload (both new SFCs and new traffic).

• (R4) Scalability. The solution should be applicable to large-
scale networks.

• (R5) Quick Failover. When failure happens, HyperSFP
should recover the SFCs service promptly.

III. DESIGN OVERVIEW

Assumptions. We make the following assumptions about
the DCN scenario.
• SFC ID for Traffic Classification. Each SFC has a unique

ID, and its traffic has that ID SFC ID as well. This ID
is used to distinguish different tenants or application in
management. The ID can be implemented as VLAN, VxLan,

…

…

Core

Aggregation

Access

PodPodPod

Fig. 1: The Topology of a Typical 3-layer Fat-Tree Hierarchical Data
Center Network

GRE, or even IP subnet. The programmable switch parses
the SFC ID and recognizes SFC traffic.

• Statically Prepared NF Types. There are limited types of
NFs (some listed in § VI). We assume the operator pre-
developed a few NF types for the tenants, and a tenant
would select NFs from the NF types to construct its own
SFC. While the types of NFs can increase with long-term
evolution, we regard the types of NFs at each deployment
cycle (a few days) to be static and fixed.

• Switch NF Serving SFC Instances. NFs are deployed on
switches, serving (possibly) multiple SFCs. NFs on SFCs
are instances, and NF instances of the same type can be
installed on the same switch NFs to share the computation
resources. NFs instances’ traffic is isolated by the SFC ID,
processed by its own rules but the same NF processing logic.

• SFC Pre-configuration. An SFC’s traffic volume and the
number of rules in each NFs are determined in advance for
HyperSFP. Because these are configuration parameters from
the tenant (e.g., reserved bandwidth, pre-configured rules)
before the SFC is launched.

• DCN Topology. Typical data centers use a Fat-Tree topol-
ogy with multiple paths between servers. There are three-
layer in the topology — access switches (a.k.a. TOR
switches), aggregation switches, and core switches. The
access switches and aggregation switches are grouped as
pods that serve different servers. Different paths among
servers are homogeneous with the same number of hops
and each hop at the same layer. Fig. 1 is an example of
Fat-Tree topology.

Design Rationale. First, HyperSFP first implements NFs
on programmable switches so as to achieve performance gain
(R1).

Second, HyperSFP makes redundant NF deployment on
multi-paths of the DCN topology so as to achieve fault toler-
ance (R2). When HyperSFP sets up multiple SFC instances,
a few of them serve the runtime traffic, named “active NFs”,
and others stand by to take over the traffic in case of failure,
named “backup NFs”.1 A backup NF is deployed on the same
position of another path of its active NF, which is called intra-
layer redundancy. All backup NFs are pre-installed because
the prolonged traffic interruption would be caused by the new

1A switch can deploy both active NFs and backup NFs simultaneously, e.g.,
an active NF from one SFC and a backup NF from another SFC.

Match Action Table of FW

match action
ip4.srcAddrSFC ID

FORWARD;

DROP;1 10.0.10.0/24

2 192.168.10.0/24

2

…

…

…
…

192.168.20.0/24 DROP;

 SFC 1: LB -> FW
 SFC 2: TC -> FW

LB

FW

TC’

FW

LB’ TC

FW’FW’
SFC 1

SFC 1’

SFC 2

SFC 2’

Fig. 2: An Example of HyperSFP Placement

setup of NF, where programmable switches take a while to
necessarily reboot, compile NF code and set up rules [30].

Third, HyperSFP formulates an IP model to place SFCs onto
DCN, with the objective of minimizing the maximum load on
switches (R3), and relaxes the problem to approximate ones
for efficiency (R4). Finally, HyperSFP data plane sets up SFCs
according to the control-plane plan and makes quick failover
whenever failure happens (R5).

Example. As is shown in Fig. 2, two SFCs are distributed
in the DCN. Both the SFCs span different layers of switches
to meet resource requirements. For example, the load balancer
(LB) of SFC1 is deployed on aggregation switches while the
firewall (FW) is deployed in a core switch. The backup in-
stances of all these NFs (LB, FW , TC) are created with intra-
layer redundancy, marked as LB′, FW ′ and TC ′. The active
FW of SFC1 and the backup FW ′ of SFC2 are deployed
in the same core switch, sharing computation resources. In the
match-action table of the shared firewall, the SFC ID justifies
using one switch NF to isolate the traffic from multiple SFCs.

IV. CONTROL PLANE DESIGN

HyperSFP uses Integer Programming to model the SFC
deployment and relaxes it to approximate approaches for
efficiency.

A. Preliminaries

A topology in DCN consists of N switches S =
{s1, s2, · · · , sN}. In a Fat-Tree topology, the path between any
pair of end hosts has the fixed number of hops; if two hosts
are local (within the same pod), we let the traffic traverse to
the core and then be reflected back, using more hops in the
aggregation layer and the core layer to deploy SFC. We also
assume all switches are programmable switches.

One SFC is denoted as cl, which carries a flow fl with the
traffic rate Tl. The m-th NF on cl requires Memml to deploy
its rules. An NF type is denoted by i (e.g., load balancer,
firewall), and its processing logic would consume computation
resource of Comi once newly deployed on a switch. For one

TABLE I: Symbols Used in Modeling
Symbol Type Explanation
fl const the l-th flow
cl const the SFC that processes the flow fl
sn const the n-th switch
Tl const the bandwidth requirement of the flow fl
Memml const the memory requirement of m-th NF of SFC cl
i const the type of NF
Comi const the computation requirement of the NF in type i
NFml const the type of the m-th NF of SFC cl
CCOMn const maximal computation capacity for switch sn
CMEMn const maximal memory capacity for switch sn
K const the number of all access switches
R const the number of NF instances; larger R within range leads

to more fault tolerance
α const the switch failure rate
M const the maximal length of all service chains
Xni BIN var whether to deploy the NF of type i in switch sn
Znml BIN var whether to “prepare” the m-th NF of SFC cl in switch

sn
Ynml BIN var whether to deploy the m-th “active” NF of SFC cl in

switch sn
Dml INT var the layer number of the m-th NF of SFC cl

Bn derived the overall traffic in switch sn

SFC, HyperSFP keeps its traffic traverse physical NFs in the
same order as specified by the SFC.

B. Variables

We use binary variable X (TABLE I) to denote whether an
NF type is deployed on a switch. HyperSFP needs to consider
both active and backup NF deployment. Thus, we use binary
variable Z to denote whether one SFC’s NF is prepared on
a specific switch, i.e., both active and backup NFs; 2 we use
binary variable Y to denote whether one SFC’s NF is active
on a specific switch, i.e., active NFs.

C. Constraints

The SFC placement is constrained by the fault tolerance
requirement, the switch resources (memory and computation)
and the bandwidth capacity of the switch board.

1) Deployment Constraint: If an SFC’s NF is deployed on
a switch, the switch must have that type of NF set up.

Znml ≤ Xni, i = NFml,∀n,m, l. (1)

NFs within the same SFC should retain a sequential order
to ensure correct packet processing. When one of the NFs
is deployed, the order should be taken care of during the
placement of other NFs. In other words, NFs in an SFC should
be placed from the access layer to the aggregation layer, and
to the core layer in sequence.

d
∑
n n× Yn,m,l

K
e ≤ d

∑
n n× Yn,m+1,l

K
e,∀l,m (2)

If Y is 0, the equation is always true; if both Y s are 1,
n × Y is the switch index. We index switch from bottom to
the top, and use K to denote the number of switches in each
layer (except the core layer). Thus, dn×YK e denotes the layer
of a switch. 3

2To prevent SFCs from being deployed in other pods, Z is variable only
with the range of switches in the same pod; otherwise, it’s 0.

3The access switches are in the first layer (denoted as 1), and so on and
so forth.

2) Switch Resource Constraint: Each new setup of certain
NF type consumes the computation resource of the switch,
and the total consumption should not exceed the switch
computation capacity.∑

i

Comi ×Xni ≤ CComn
,∀n. (3)

Deploying an NF instance needs to configure its rules (e.g.,
the firewall rules in Fig. 2), which consumes switch memory.
All NF instances’ memory consumption should not exceed the
switch memory capacity.∑

m,l

Memml × Znml ≤ CMemn
,∀n. (4)

3) Fault Tolerance: One active instance should be allocated
to each NF. ∑

n

Ynml = 1,∀m, l (5)

Each SFC’s NF should have at least several instances
prepared (denoted as R), including one active instance and
(R− 1) backup instances.∑

n

Znml = R,∀m, l (6)

The active instance belongs to the prepared instances.

Ynml ≤ Znml,∀n,m, l. (7)

We assume an active NF and its backup NF(s) are placed in
the same layer by HyperSFP, which guarantees the NF orders
when switching to backup NFs. Fixing m and l and varying
n in Znml, if for all Znmls that is 1, their layer number
dn×Znml

K e should be equal. We use Dml to denote this layer
number, and Dml = dn×Znml

K e, ∀Znml = 1. Thus, we have
the constraint

Dml = (1− Znml)×Dml + d
n× Znml

K
e,∀n,m, l. (8)

If Z is 1, the last expression is constrained to be equal to
the same Dml; otherwise, if Z is 0, the equation permanently
holds.

4) Switch Bandwidth Capacity.: Each switch has a max-
imum processing capacity, which is used to handle traffic
in active NFs in normal runtime and handle extra fail-over
traffic of backup NFs in case of failure recovery. For a
switch sn, it handles active NF traffic with the volume of∑
ld

∑
m Ynml

M e × Tl, where d
∑

m Ynml

M e is a binary indicator
(0 or 1) whether the SFC cl has any NFs on sn.

We use α to denote the switch failure rate, e.g., reported as
2% in [17] and 5% in [29]. Since reserving full bandwidth for
all backup NFs is wasteful in practice, we require the switch
to only reserve α times of normal traffic to handle failover
traffic.4 The failover traffic is (d

∑
m Znml

M e−d
∑

m Ynml

M e)×Tl.
Thus, we have switch sn’s traffic

4The reservation ratio can be tuned in different scenarios.

Bn = (1− α)
∑
l

⌈∑
m Ynml
M

⌉
Tl + α

∑
l

⌈∑
m Znml
M

⌉
Tl.

(9)
And we have the constraint

Bn ≤ B, ∀n. (10)

D. Objective

The objective of the SFC placement is to achieve load
balance among switches processing capacity. This objective
can ensure the system resilience in case of bursty workload
by minimizing the maximal traffic among all n switches.

Objective = minimize max(Bn). (11)

E. Approximations

In cloud computing scenarios, the tenants join and leave
dynamically. Their requests need timely response. But solving
integer programming is time consuming, which is not practi-
cal. We consider two approaches to accelerate the placement
computation.

1) Stage Separated Approach: The IP complexity increases
with the number of constraints and variables. We try to break
the whole IP problem into two smaller ones. This approach
has two steps. In the first step, we solve the problem of finding
locations for all NFs (both active ones and backup ones),
assuming all NFs have traffic. The objective is still (11), but
the constraint (5) and (7) are deactivated, and the equation (9)
is changed to

Bn =
∑
l

d
∑
m Znml
M

e × Tl
R
. (12)

For example, if R is 2, that is to have 2 instances for each
NF, we divide the bandwidth requirement on each switch to
half.

In the second step, we solve the problem of choosing active
NFs among the prepared NF positions, where the objective is
still (11). The constraints are the same as the original solution,
with Equation (1) to (10), but X and Z are constants as a result
of the first step instead of variables.

2) LP Relaxation: We first relax the integer constraints to
linear constraints since linear programming (LP) can be solved
in polynomial time. The integer constraints are changed to real
numbers in the same range, e.g., binary variables X,Y, Z ∈
{0, 1} are transformed to 0 ≤ X,Y, Z ≤ 1.

Second, integer variables are rounded to a nearby integer
with probability. For example, a value of X.Y (X is integer
and Y is decimal) is rounded to X with probability 1−Y and
to X + 1 with probability Y .

Finally, the rounded variables are put to the original IP
problems to validate the constraints. If the rounded variables
cannot satisfy the constraints, the algorithm will withdraw one
SFC which requires most resources but least bandwidth from
the hot spot, and go back to the second step for another trial;
otherwise, rounded results are output. Randomized rounding

SFC SFC’

delete: Flow x-> A
insert: Flow x-> B

A B

x
C

Fig. 3: An Example of Failure Takeover

can guarantee the expected result of each rounding step to
be the optimal (i.e., E(Objective with rounded variable) =
Objective of LP).

V. DATA PLANE DESIGN

The data plane prepares NFs during boot-up and also
migrates traffic when the failure takes place.

A. Set Up SFC with Redundancy

As discussed in §III, setting up an NF during the failover is
not a first-class choice due to the time cost in code compilation
and rule installation. Thus, HyperSFP prepares both active and
backup NFs during boot-up.

While tenants may wait for active NFs, they are set up and
provided firstly to tenants. Then the backup NFs are setup
asynchronously after active NFs with lazy rule installation.

B. Failure Takeover

When the network controller is notified (e.g., SNMP) of the
network failure, e.g., a link/switch failure, it takes actions to
redirect the traffic from the compromised NFs to its backup
NFs, i.e., switching from Y to Z − Y in §IV-B.

HyperSFP installs static routing rules for the NF switching.
Illustrated in Fig. 3, once a switch failure is reported, the
controller would rapidly locate the redundancy of all SFCs
in fault switch A (e.g., SFC whose redundant one is SFC ′

in switch B). The controller decides on changing the routing
table (i.e., insert or delete) in predecessor switch C to route
original traffic from A to B. This routine is applied to other
neighbors of switch A as well.

VI. EVALUATION

We conduct experiments to answer the following key ques-
tions:
• What throughput can HyperSFP achieve in various SFC

provision scenarios? What’s the gap between HyperSFP
and strict IP solution? (§VI-B)

• Is HyperSFP scalable to complex network topology and
large number of SFCs? (§VI-C)

• To what extent can HyperSFP mitigate the traffic inter-
ruption after switch/link failures happen? (§??)

A. Experiment Setup

Implementation. We implement HyperSFP SFC placement
solver using optimizer Gurobi [31]. We implement HyperSFP
routing strategy using OpenFlow APIs [32] and manage the
SFC rules via gRPC (i.e., BRI) with the switch. HyperSFP’s

controller has 892 lines of code in Python, and its SFCs with
377 lines of code in P4.

Testbed Setup. We evaluate HyperSFP’s data plane on
a testbed consisting of one commodity switch, one pro-
grammable switch (32-port Tofino switch, each port with
100Gbps bandwidth), and 2 mid-range servers (4 Intel(R)
Xeon(R) Gold 5120T CPU @ 2.20GHz 16 cores, 192RAM
with Ubuntu 18.04, 100Gbps Mellanox ConnectX-5 NICs,
22TB disk) that run the sender and the receiver. We use libpcap
[33] to generate traffic with traces [34].

Simulation Topology. We also run a simulation for large-
scale networks according to the settings in [35]. We use two
kinds of topology varying in its complexity. We set the switch
failure rate α to be 5%.
1) A small topology with moderate number of flows. The

topology is 3-tier, consisting of 4 core switches, 4 aggre-
gation switches and 4 access switches. The switches are
fully connected to those in the adjacent layer.

2) A complex 96-node Fat-Tree topology, including 16 core
switches, 40 aggregation switches and 40 access switches.
The first and second switches are divided into 10 pods,
each with 4 access and 4 aggregation switches.

NFs. We implement several NFs on Tofino Switches, in-
cluding firewall, load balancer, traffic classifier and router.

SFCs. In the simulation, we randomly generate SFCs of a
sequence of diverse NFs and assign memory and computation
requirements to them according to existing measurement re-
ports [36], [37]. For the small topology, we generate SFCs with
the number ranging from 10 to 100; for the large topology,
the number can reach the order of hundreds to thousands. The
average volume of the traffic is 10G bps.

Baselines. We compare three variants of HyperSFP. The
“HyperSFP” means the approach with linear programming
relaxation (§IV-E2); “Separate” means the approach of Hyper-
SFP with integer programming in separated stages (§IV-E1);
and “IP” means the approach of integer programming without
any optimizations.

Metrics. We measure the throughput of the system and
the execution time of the algorithm to evaluate HyperSFP’s
efficiency and scalability. We measure the compromised traffic
and failover time during failure recovery to evaluate Hyper-
SFP’s effectiveness.

B. Comparison of HyperSFP Variants

We run experiments in simulation with the small topology
(because some variants cannot finish for the large topology).
We tune the number of SFCs and measure the execution time
of HyperSFP and two baselines varying in the number of
SFCs. As shown in Fig. 4, a combined searching could sharply
increase the runtime and reach the runtime limitation (600s)
with 40 SFCs. Separate searching does perform much better,
which gives us hints that stage-separated optimization does not
essentially eliminate the complexity of IP solution. HyperSFP
applies linear relaxation to offer new near-optimal solutions,
which could decrease the execution time to great extent, all
less than 35s.

10 20 30 40 50 60 70
No. of SFCs (L)

0

100

200

300

400

500

600
Ex

ec
ut

io
n

Ti
m

e
(s

)
IP
Separate
HyperSFP

Fig. 4: Execution Time of Hyper-
SFP Compared with Baselines

10 20 30 40 50 60 70
No. of SFCs (L)

25
50
75

100
125
150
175
200

Th
ro

ug
hp

ut
 (G

bp
s)

IP
Separate
HyperSFP

Fig. 5: The Objective Through-
put of HyperSFP with Low Band-
width Capacity

10 20 30 40 50 60 70
No. of SFCs (L)

25
50
75

100
125
150
175
200

Th
ro

ug
hp

ut
 (G

bp
s)

IP
Separate
HyperSFP

Fig. 6: The Objective Throughput
of HyperSFP with High Band-
width Capacity

250 500 750 1000 1250 1500 1750 2000
No. of SFCs (L)

50

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e

(s
)

HyperSFC

Fig. 7: Execution Time of Hyper-
SFP Varying in the Number of
SFCs

The approximation might raise some concerns on precision
loss. Hence, we output the objective value (maximal through-
put among all switches) to show the differences. To distinct
the ‘Separate’ method, we conduct two experiments under
different bandwidth capacities.

Undergoing low bandwidth capacity of switches, SFCs may
contend for the bandwidth resources, which forces ‘Separate’
to re-run the decision-making process of SFC placement no
matter how to choose active/backup. Before the ’Separate’
method enters a new iteration, some decision has been made
and added to the model, which might affect the overall
objective. Thus, as shown in Fig.5, ‘Separate’ would perform
worse under these circumstances; ‘IP’ has no difference since
it takes all these factors into consideration; HyperSFP shows
a little increase in the maximal throughput.

With high bandwidth capacity, as shown in Fig.6, ‘Sepa-
rate’ can run the whole procedure within one iteration. The
throughput is close to the ‘IP’, which is better than HyperSFP,
typically as we increase the number of SFCs.

Despite that HyperSFP shows some throughput gap behind
to the optimal solution ‘IP’, the error is narrowed within 15.1%
in the worst case and 11.4% on average, which is acceptable
to achieve comparatively balanced workload within feasible
execution time.

C. Scalability

To testify the feasibility of scaling HyperSFP to large-scale
data center network, we adopt a more complex topology and
increase the number of SFCs to more than 1K. As illustrated
in Fig. 7, HyperSFP shows that the execution time goes up
as the number of SFCs increases and reaches around 240s
when 2000 SFCs are provisioned. We omit to show the result
of baselines since they have reached the limitations in small
scale experiments. Although the number of SFCs is no more
than the order of thousands, it can satisfy a moderate cloud
network. [36]

VII. RELATED WORK

P4-Acclerated NFs. Since the IC vendors enable the
programmability atop traditional switches [26], [27], some
works emerge to utilize the fast switch and offload their
functionalities from end-host to in-network. SilkRoad and
HULA [10], [38] design fast layer-4 load balancing using
programmable data plane. [14], [39] propose heterogeneous
gateways to alleviate the burden on servers. [40], [41] pro-
vide in-network cache for large-scale storage systems. [42]

performs in-network aggregation to accelerate neural network
training. [43] enables data aggregation to accelerate data
processing applications. HyperSFP is a control plane that can
manage these NFs.

Fault-Tolerance in NFV and P4. Fault-tolerance is impor-
tant issue in large scale system [44]–[49]. Ananta and Maglev
[50], [51] are distributed software NFs, which could mitigate
the impact of failures. FTMB [52], REINFORCE [53], FTC
[54], FTvNF [55] and [56] support chain-level failover to
provide fault tolerance in NFV systems. For example, [57]
uses checkpoints to recover the states. Some work [58]–[60]
proposes NF modularization to improve fault resiliency.

SwiShmem [61] and RedPlane [62] provide state backup
mechanisms to prevent NF state from switch failures. They are
alternative approaches compared with HyperSFP. HyperSFP
uses heterogeneous devices (all switches) instead of switch-
server mixed platforms. Many work [63]–[68] propose state
management interfaces, but they do not target unplanned
downtime. They are complementary to HyperSFP.

SFC Deployment in Programmable Switches. Recent
efforts propose offloading SFC to programmable switches.
P4SC [69] provides primitives to deploy SFCs in switches, but
it lacks the ability to ensure resource efficiency. Dejavu [70]
mainly proposes data plane design to enable multi-tenancy in
switches, but our work focuses more on control plane design.
LightNF [22] carries out analysis on the feasibility of porting
NFs to programmable switches and proposes naive approaches
to utilize both the hardware and software.

Other works [35], [71]–[79] also alleviate the progress of
offloading SFCs to programmable switches but they all lack
support for fault tolerance.

VIII. CONCLUSION

We built HyperSFP, which can place multiple SFCs in DCN
and handle network failures. HyperSFP implements NFs on
programmable switches, which provides performance accel-
eration. HyperSFP builds IP model, stage-separated model,
and LP model to place multiple SFCs, and it achieves fault
tolerance, load balance, and scalability. HyperSFP’s data plane
installs NFs according to the control-plane plan and handles
failure by rerouting traffic to backup NFs. Our prototype and
evaluation shows that HyperSFP achieves good properties of
fault tolerance, scalability, load balance, prompt failover, and
performance gain when deploying multiple SFCs in DCN.

REFERENCES

[1] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. K. Ramakrishnan, and T. Wood, “Opennetvm: A platform for
high performance network service chains,” in Proceedings of the
ACM SIGCOMM Workshop on Hot topics in Middleboxes and
Network Function Virtualization, HotMiddlebox@SIGCOMM 2016,
Florianopolis, Brazil, August, 2016, 2016, pp. 26–31. [Online].
Available: http://doi.acm.org/10.1145/2940147.2940155

[2] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 43–56.

[3] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 2014, pp. 459–473.

[4] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “Nfvnice: Dynamic backpressure
and scheduling for nfv service chains,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication. ACM,
2017, pp. 71–84.

[5] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: A framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles, ser. SOSP ’15.
New York, NY, USA: ACM, 2015, pp. 121–136. [Online]. Available:
http://doi.acm.org/10.1145/2815400.2815423

[6] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 34–47, 2015.

[7] “https://www.alibabacloud.com/blog/the-network-architecture-and-
network-management-system-behind-this-years-double-11 595615.”

[8] Facebook. Disaggregate: Networking recap. [On-
line]. Available: https://engineering.fb.com/2017/01/30/data-center-
engineering/disaggregate-networking-recap/

[9] “https://scholar.harvard.edu/srivatsan-krishnan/publications/accelerating-
recurrent-neural-networks-analytics-servers-comparison.”

[10] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 15–28. [Online].
Available: https://doi.org/10.1145/3098822.3098824

[11] Y. He, W. Wu, X. Wen, H. Li, and Y. Yang, “Scalable on-switch rate
limiters for the cloud,” in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021, pp. 1–10.

[12] R. Datta, S. Choi, A. Chowdhary, and Y. Park, “P4guard: Designing p4
based firewall,” in MILCOM 2018-2018 IEEE Military Communications
Conference (MILCOM). IEEE, 2018, pp. 1–6.

[13] F. Hauser, M. Häberle, M. Schmidt, and M. Menth, “P4-ipsec: Site-
to-site and host-to-site vpn with ipsec in p4-based sdn,” IEEE Access,
vol. 8, pp. 139 567–139 586, 2020.

[14] K. Qian, S. Ma, M. Miao, J. Lu, T. Zhang, P. Wang, C. Sun,
and F. Ren, “Flexgate: High-performance heterogeneous gateway in
data centers,” in Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019, ser. APNet ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 36–42. [Online]. Available:
https://doi.org/10.1145/3343180.3343182

[15] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating
large production networks,” in Proceedings of the 26th Symposium on
Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 599–613. [Online].
Available: https://doi.org/10.1145/3132747.3132759

[16] J. Meza, T. Xu, K. Veeraraghavan, and O. Mutlu, “A large scale
study of data center network reliability,” in Proceedings of the Internet
Measurement Conference 2018, ser. IMC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 393–407. [Online].
Available: https://doi.org/10.1145/3278532.3278566

[17] R. Singh, M. Mukhtar, A. Krishna, A. Parkhi, J. Padhye, and D. Maltz,
“Surviving switch failures in cloud datacenters,” SIGCOMM Comput.
Commun. Rev., vol. 51, no. 2, p. 2–9, May 2021. [Online]. Available:
https://doi.org/10.1145/3464994.3464996

[18] No fooling: Microsoft cloud outage takes azure, teams and office
365 offline. [Online]. Available: https://siliconangle.com/2021/04/01/no-
foolin-microsoft-cloud-outage-takes-azure-teams-office-365-offline/

[19] Aws outage report. [Online]. Available:
https://aws.amazon.com/message/11201/

[20] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[21] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 121–136. [Online]. Available:
https://doi.org/10.1145/3132747.3132764

[22] X. Chen, Q. Huang, P. Wang, Z. Meng, H. Liu, Y. Chen, D. Zhang,
H. Zhou, B. Zhou, and C. Wu, “Lightnf: Simplifying network function
offloading in programmable networks,” in 2021 IEEE/ACM 29th Inter-
national Symposium on Quality of Service (IWQOS), 2021, pp. 1–10.

[23] Akamai cdn hits 72tbps data traffic record. [Online]. Avail-
able: https://www.capacitymedia.com/articles/3822904/akamai-cdn-hits-
72tbps-data-traffic-record

[24] The p4 language specification. [Online]. Available: https://p4.org/p4-
spec/docs/P4-16-v1.0.0-spec.html

[25] K. Gao, T. Nojima, and Y. R. Yang, “Trident: Toward a unified
sdn programming framework with automatic updates,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 386–401. [Online].
Available: https://doi.org/10.1145/3230543.3230562

[26] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15).
Oakland, CA: USENIX Association, 2015, pp. 103–115. [On-
line]. Available: https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/jose

[27] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn,”
in Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 99–110. [Online]. Available:
https://doi.org/10.1145/2486001.2486011

[28] S. Jha, A. Patke, J. Brandt, A. Gentile, B. Lim, M. Showerman,
G. Bauer, L. Kaplan, Z. Kalbarczyk, W. Kramer, and
R. Iyer, “Measuring congestion in high-performance datacenter
interconnects,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 37–57. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/jha

[29] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, p. 350–361, Aug. 2011.
[Online]. Available: https://doi.org/10.1145/2043164.2018477

[30] Leveraging stratum and tofino fast refresh for soft-
ware upgrades. [Online]. Available: https://opennetworking.org/wp-
content/uploads/2018/12/Tofino Fast Refresh.pdf

[31] Gurobi. [Online]. Available: https://www.gurobi.com
[32] [Online]. Available: https://docs.openvswitch.org/en/latest/faq/openflow/
[33] libpcap. [Online]. Available: https://www.tcpdump.org
[34] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
267–280. [Online]. Available: https://doi.org/10.1145/1879141.1879175

[35] J. Gao, E. Zhai, H. H. Liu, R. Miao, Y. Zhou, B. Tian, C. Sun, D. Cai,
M. Zhang, and M. Yu, “Lyra: A cross-platform language and compiler
for data plane programming on heterogeneous asics,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
435–450. [Online]. Available: https://doi.org/10.1145/3387514.3405879

[36] R. Potharaju and N. Jain, “Demystifying the dark side of the middle: A
field study of middlebox failures in datacenters,” in Proceedings of the
2013 Conference on Internet Measurement Conference, ser. IMC ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
9–22. [Online]. Available: https://doi.org/10.1145/2504730.2504737

[37] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to
express and automatically reconcile network policies,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on
Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 29–42. [Online].
Available: https://doi.org/10.1145/2785956.2787506

[38] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research, 2016, pp. 1–12.

[39] T. Pan, N. Yu, C. Jia, J. Pi, L. Xu, Y. Qiao, Z. Li, K. Liu, J. Lu,
J. Lu, E. Song, J. Zhang, T. Huang, and S. Zhu, “Sailfish: Accelerating
cloud-scale multi-tenant multi-service gateways with programmable
switches,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, ser. SIGCOMM ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 194–206. [Online]. Available:
https://doi.org/10.1145/3452296.3472889

[40] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 121–136. [Online]. Available:
https://doi.org/10.1145/3132747.3132764

[41] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin,
and I. Stoica, “Distcache: Provable load balancing for large-scale
storage systems with distributed caching,” in 17th USENIX Conference
on File and Storage Technologies (FAST 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 143–157. [Online]. Available:
https://www.usenix.org/conference/fast19/presentation/liu

[42] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and M. Swift,
“ATP: In-network aggregation for multi-tenant learning,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 741–761. [Online].
Available: https://www.usenix.org/conference/nsdi21/presentation/lao

[43] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca, P. Pietzuch,
and A. L. Wolf, “Netagg: Using middleboxes for application-specific
on-path aggregation in data centres,” in Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 249–262. [Online]. Available:
https://doi.org/10.1145/2674005.2674996

[44] B. Yang, Z. Xu, W. K. Chai, W. Liang, D. Tuncer, A. Galis, and
G. Pavlou, “Algorithms for fault-tolerant placement of stateful virtu-
alized network functions,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–7.

[45] A. Katsarakis, Y. Ma, Z. Tan, A. Bainbridge, M. Balkwill, A. Dragojevic,
B. Grot, B. Radunovic, and Y. Zhang, “Zeus: Locality-aware distributed
transactions,” in Proceedings of the Sixteenth European Conference
on Computer Systems, ser. EuroSys ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 145–161. [Online].
Available: https://doi.org/10.1145/3447786.3456234

[46] Y. Harchol, A. Mushtaq, V. Fang, J. McCauley, A. Panda, and
S. Shenker, “Making edge-computing resilient,” in Proceedings of the
11th ACM Symposium on Cloud Computing, ser. SoCC ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
253–266. [Online]. Available: https://doi.org/10.1145/3419111.3421278

[47] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller
fault-tolerance in software-defined networking,” in Proceedings
of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, ser. SOSR ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2774993.2774996

[48] Y. Yu, C. Qian, W. Wu, and Y. Zhang, “Netcp: Consistent, non-
interruptive and efficient checkpointing and rollback of sdn,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), 2018, pp. 1–10.

[49] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and X. Jin,
“Harmonia: Near-linear scalability for replicated storage with in-network

conflict detection,” Proc. VLDB Endow., vol. 13, no. 3, p. 376–389, Nov.
2019. [Online]. Available: https://doi.org/10.14778/3368289.3368301

[50] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 16), 2016, pp. 523–535.

[51] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri, “Ananta:
Cloud scale load balancing,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 207–218.
[Online]. Available: https://doi.org/10.1145/2486001.2486026

[52] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, p. 227–240, Aug. 2015. [Online]. Available:
https://doi.org/10.1145/2829988.2787501

[53] S. G. Kulkarni, G. Liu, K. K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “Reinforce: Achieving efficient failure resiliency for network
function virtualization-based services,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 2, pp. 695–708, 2020.

[54] M. Ghaznavi, E. Jalalpour, B. Wong, R. Boutaba, and A. J.
Mashtizadeh, “Fault tolerant service function chaining,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, ser. SIGCOMM ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
198–210. [Online]. Available: https://doi.org/10.1145/3387514.3405863

[55] Y. Harchol, D. Hay, and T. Orenstein, “Ftvnf: Fault tolerant
virtual network functions,” in Proceedings of the 2018 Symposium
on Architectures for Networking and Communications Systems,
ser. ANCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 141–147. [Online]. Available:
https://doi.org/10.1145/3230718.3230731

[56] N. Gray, C. Lorenz, A. Müssig, S. Gebert, T. Zinner, and P. Tran-Gia,
“A priori state synchronization for fast failover of stateful firewall vnfs,”
in 2017 International Conference on Networked Systems (NetSys), 2017,
pp. 1–6.

[57] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A
high availability framework for middleboxes,” in Proceedings of the
4th Annual Symposium on Cloud Computing, ser. SOCC ’13. New
York, NY, USA: Association for Computing Machinery, 2013. [Online].
Available: https://doi.org/10.1145/2523616.2523635

[58] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-
defined framework for developing, deploying, and managing network
functions,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 511–524. [Online]. Available:
https://doi.org/10.1145/2934872.2934875

[59] S. R. Chowdhury, Anthony, H. Bian, T. Bai, and R. Boutaba, “A
disaggregated packet processing architecture for network function virtu-
alization,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 6, pp. 1075–1088, 2020.

[60] Y. Jiang, Y. Cui, W. Wu, Z. Xu, J. Gu, K. K. Ramakrishnan, Y. He,
and X. Qian, “Speedybox: Low-latency nfv service chains with cross-nf
runtime consolidation,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), 2019, pp. 68–79.

[61] L. Zeno, D. R. K. Ports, J. Nelson, and M. Silberstein, “Swishmem:
Distributed shared state abstractions for programmable switches,”
in Proceedings of the 19th ACM Workshop on Hot Topics in
Networks, ser. HotNets ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 160–167. [Online]. Available:
https://doi.org/10.1145/3422604.3425946

[62] D. Kim, J. Nelson, D. R. K. Ports, V. Sekar, and S. Seshan, “Redplane:
Enabling fault-tolerant stateful in-switch applications,” in Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, ser. SIGCOMM ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
223–244. [Online]. Available: https://doi.org/10.1145/3452296.3472905

[63] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network
function control,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: Association

for Computing Machinery, 2014, p. 163–174. [Online]. Available:
https://doi.org/10.1145/2619239.2626313

[64] M. Pozza, A. Rao, D. F. Lugones, and S. Tarkoma, “Flexstate: Flexible
state management of network functions,” IEEE Access, vol. 9, pp.
46 837–46 850, 2021.

[65] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and
S. Shenker, “Elastic scaling of stateful network functions,”
in 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). Renton, WA: USENIX
Association, Apr. 2018, pp. 299–312. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/woo

[66] T. V. Doan, C. Ding, G. T. Nguyen, D. You, and F. H. P. Fitzek, “Fast:
Flexible and low-latency state transfer in mobile edge computing,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[67] J. Khalid and A. Akella, “Correctness and performance for stateful
chained network functions,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA:
USENIX Association, Feb. 2019, pp. 501–516. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/khalid

[68] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:
Enabling state-intensive network functions on programmable switches,”
in Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, archi-
tectures, and protocols for computer communication, 2020, pp. 90–106.

[69] X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou, “P4sc: Towards
high-performance service function chain implementation on the p4-
capable device,” in 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), 2019, pp. 1–9.

[70] D. Wu, A. Chen, T. S. E. Ng, G. Wang, and H. Wang, “Accelerated
service chaining on a single switch asic,” in Proceedings of the 18th
ACM Workshop on Hot Topics in Networks, ser. HotNets ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
141–149. [Online]. Available: https://doi.org/10.1145/3365609.3365849

[71] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated
software middlebox offloading to programmable switches,” in
Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 283–295. [Online]. Available:
https://doi.org/10.1145/3387514.3405869

[72] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar,
S. Burad, A. DeHon, and B. T. Loo, “Flightplan: Dataplane
disaggregation and placement for p4 programs,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, Apr. 2021, pp. 571–592. [Online]. Available:
https://www.usenix.org/conference/nsdi21/presentation/sultana

[73] H. Liu, X. Chen, Q. Huang, H. Zhou, D. Zhang, and C. Wu, “Sra:
Switch resource aggregation for application offloading in programmable
networks,” in GLOBECOM 2020, 2020, pp. 1–6.

[74] X. Chen, H. Liu, Q. Huang, P. Wang, D. Zhang, H. Zhou, and C. Wu,
“Speed: Resource-efficient and high-performance deployment for data
plane programs,” in ICNP’ 20, 2020, pp. 1–12.

[75] J. Ma, S. Xie, and J. Zhao, “P4sfc: Service function chain offloading with
programmable switches,” in 2020 IEEE 39th International Performance
Computing and Communications Conference (IPCCC), 2020, pp. 1–6.

[76] D. Moro, G. Verticale, and A. Capone, “A framework for network
function decomposition and deployment,” in 2020 16th International
Conference on the Design of Reliable Communication Networks DRCN
2020, 2020, pp. 1–6.

[77] Y. Zhou, J. Bi, C. Zhang, M. Xu, and J. Wu, “Flexmesh: Flexibly
chaining network functions on programmable data planes at runtime,”
in 2020 IFIP Networking Conference, 2020, pp. 73–81.

[78] Y. Xue and Z. Zhu, “Leveraging heterogeneous nfv platforms to upgrade
service function chains in dcns,” in NetSoft’ 21, 2021, pp. 283–287.

[79] D. Moro, G. Verticale, and A. Capone, “Network function decomposition
and offloading on heterogeneous networks with programmable data
planes,” IEEE Open Journal of the Communications Society, vol. 2,
pp. 1874–1885, 2021.

