
WRS: Workflow Retrieval System for Cloud
Automatic Remediation

Hongyi Huang
Tsinghua University

hhy.hongyi@outlook.com

Wenfei Wu
Peking University

wenfeiwu@pku.edu.cn

Shimin Tao
Huawei

taoshimin@huawei.com

Abstract—Remediation systems in modern information infras-
tructure gradually take over the increasing workload of unex-
pected events from operators. The core logic in such systems —
remediation rule <symptom, workflow> — still needs operators
to fill in manually, which is a tedious and error-prone process. We
propose Workflow Retrieval System (a.k.a. WRS), which helps
the operator to build remediation rules.

WRS is a recommendation system that recommends structures
from existing rules to operators when they are creating new
ones. WRS formalizes the workflows in remediation rules as trees
and extracts representative atomic structures from them. Then
WRS organizes atomic structures in two ways to accelerate the
later retrieval — a two-level hierarchy which helps searching
similar structures, and a keyword indexing structure which helps
searching by words. With the two retrieval structures, we build
two applications: one is real-time workflow auto completion
application which recommends remaining structures based on
the existing partial structure, and another is workflow recom-
mendation where WRS recommends atomic structures based on
the description of the remediation symptoms.

We prototype WRS and evaluate it with legacy device vendors’
operation manual. Our evaluation shows that WRS reasonably
extracts and organizes atomic structures in remediation work-
flows, and the two applications atop it show fast execution time
and high accuracy.

I. INTRODUCTION

Modern cloud management requires operators to stay on call
for its service availability in 24/7. When unexpected events
(e.g., outage, client tickets) happen, the operators would take
actions to remedy the system — either recover the system to
a healthy state or mitigate the unhealthy symptom to keep the
service surviving.

Traditional infrastructure management usually trains opera-
tors with an operation manual, which consists of remediation
rules such as “if a symptom X happens, take the action of
A”. With the size and the complexity of cloud infrastructure
increasing, such manual operation is proposed to be over-
taken by automatic remediation systems[32]. StackStorm[8],
Rundeck[11] and FBAR[10] are examples of such systems,
where remediation rules are stored in remediation databases.

However, the process of switching from manual operation
to automatic remediation is progressing slowly. According to
our survey (§II) with cloud operators, an important reason
is that populating the remediation rule database is tedious

Wenfei Wu is the corresponding author.

and error-prone. Inexperienced operators could possibly build
wrong remediation rules, causing disastrous results; [41] and
even experienced operators need to spend huge effort to build
rules for immense exceptional events (e.g., a switch can have
more than 1000 error codes[9]).

We propose a Workflow Retrieval System named WRS to
accelerate the process of building remediation rules. It is a
recommendation system that targets the scenario where there
exist a few remediation rules in the database, and the operator
would like to add new rules to cover more events or devices.

WRS formalizes a remediation rule as a tuple <symptom,
workflow, description>; a workflow is a tree describing the
execution flow to recover the system or mitigate the failure.
WRS refines the remediation database in three ways which
improve the accuracy and efficiency in later recommendations.
(1) WRS extracts atomic structures in workflows instead of
storing whole workflows, which is more concise, accurate,
and representative. (2) WRS builds a two-level hierarchical
searching structure to organize all atomic structures, which
can quickly locate a specific atomic structure during retrieval.
(3) WRS builds a keyword indexing system to fetch semantic-
related atomic structures, which accelerates the atomic struc-
ture lookup in later recommendations.

We overcome a challenge in WRS. In atomic structure
extraction and the hierarchical retrieval structure construction,
a measure to compute the distance of two atomic structures
needs to be defined. WRS combines the semantic similarity
in natural language processing (NLP) and the tree edit dis-
tance algorithm (TED) in graph theory to define the distance
measure in WRS.

Atop WRS, we build two applications to validate its use-
fulness. First, when a workflow is partially constructed, the
application can search the hierarchical retrieval system and
return similar structures as the reference for the remaining
part. Second, when a workflow’s description is written, the
application could search the keyword indexing system and
recommend atomic structures to the operator.

We build a dataset using a network device vendor’s manuals
of five device models. We prototype WRS and measure
its processing speed in retrieving atomic structures and its
accuracy in two recommendation applications. The evaluation
shows WRS can serve the infrastructure operators in user-
acceptable real-time (less than 4 seconds) and high accuracy
(95% at most). Our contributions in this paper are as follows.978-1-6654-0601-7/22$31.00 © 2022 IEEE

Description:This workflow
executes migration of

specified KVM in response
to alarms or scheduled

maintenance.

Look up the
list of VMs

Hot migration
control

Report
failure

Loop wait
control

Loop
intervene

Check if finishing
migration

Single VM
migration Yes

No

start point

Fig. 1: VM Migration Workflow in a
Remediation System

Database

Sensor Executor

Network Devices

Remediation System

Symptom Workflow

Fig. 2: Architecture of a
Remediation System

• We formalize the basic structure of cloud remediation rules
and propose WRS to extract and organize atomic structure in
the workflow of remediation rules, which could improve the
accuracy and speed in recommendation applications.
• We build two applications atop WRS, which could recom-
mend operators new rules during the rule construction.
• We build a dataset based on device manuals to validate
WRS. And we opensource WRS and our dataset for the
community to use.

II. BACKGROUND

A. Cloud Remediation
Remediation Examples. TABLE I shows a snippet of a
network device vendor’s operation manual. The operator may
get an alarm (symptom) saying “there is bursty traffic in the
device”. There may be two root causes: the device itself has
insufficient cache or the connected host devices input excessive
traffic. The actual diagnostic steps for the operator would be
as follows. First, check whether the BE queue drops packet —
if yes, it is one of the two root causes, otherwise, it is none of
them; Second, check if RTN uses the smallest cache — if yes,
the root cause is insufficient cache, otherwise, it is excessive
burst from hosts.

Fig.1 shows a workflow of “VM hot migration”. This is a
simplified automatic process implemented in StackStorm in
the author(s)’ organization. It takes a few sequential steps
to migrate one VM, and then checks whether the migration
finishes; if yes, it proceeds with the next one; otherwise,
reports failure.

The third example is from the experience of a campus net-
work operator. When the operator gets a report of “computers
in office A cannot connect to the Internet”, the operator would
first ping an Internet website. If the ping gets through, the
operator would further check security rules such as allow/deny
list of TCP ports; otherwise, the operator would check the
routing protocols and routing tables.

With the examples above, we summarize that a few char-
acteristics of remediation.
• It is usually triggered by an event with a symptom (either

fault alarm or maintenance).
• A remediation starts from a single root. The reason is that

human operators must take a first-step action to start the
diagnosis. [41]

• Each step of the workflow executes a command. It can
be a command without output, and then the workflow
proceeds to its successor step; it can also be a command

with several possible results, used to choose the next step.
In most remediation processes, the command would be
supplemented with human readable description. [41]

• Most remediation flows have a tree structure — starting
from the root, executing a command, choosing one of the
branches (next step) according to the result of the current
step, and proceeding until the problem is solved. If the
workflow contains circles, we can easily break the circle
at the edge from the child to an ancestor and get a tree.

• The remediation usually goes with a description in natural
language explaining the symptom (e.g., error code) and
possible causes[38]. For example, operation manuals and
expert querying systems usually have such descriptions[9].

Remediation Rules. We define a remediation rule as a 3-
tuple: <symptom, workflow, description>. The symptom is
usually the reason that triggers a workflow to remedy the
system, and the workflow is a tree-structure that describes the
execution plan to automatically or manually solve/mitigate the
problem. And the description is human-readable text that helps
the operator to understand the root cause and the maintenance
operations.
Remediation Systems. Cloud operators have been starting to
apply automatic remediation systems in system failure recov-
ery/mitigation. For example, StackStorm[8] and Rundeck[11]
are two platforms that integrate heterogeneous infrastructure
management systems; and FBAR[10] is a set of daemons
“execute code automatically in response to detected software
and hardware failures”.

Fig. 2 shows the architecture of a remediation system, which
consists of a sensor to get the symptom of infrastructure prob-
lems, a database engine to make decisions, and an executor to
run a workflow to the infrastructure. The database contains
remediation rules and chooses workflows according to the
symptom.

B. Problem in Transferring to Automatic Remediation

Difficulty in Deployment. While the remediation sys-
tem/platform is ready, the switching from manual maintenance
to automatic remediation is still progressing slowly [23]. We
conducted a survey with 27 operators in a cloud provider and a
university IT department, studying the complexity in building
and maintaining the remediation systems. Part of the results
are shown in Fig. 3.

Fig. 3a shows the number and the size of workflows
estimated by the respondent in a cloud. Among the four
businesses we studied (Elastic Cloud Server, Object Storage,
Bare Mental Server, Virtual Private Cluster), all of them have
more than 200 workflows in daily operation, and the average
size of their workflows ranges from 22 to 31. From Fig. 3b,
in daily operation, the experience of operators determines the
time they spent in fixing bugs in the workflows. For example,
less experienced operators (<3 months) need 97 minutes to
debug a workflow. Fig. 3c shows the issues that lead to fault
rules in the rule creation. Most faulty rules are created due
to the operators being unable to design a workflow correctly

TABLE I: Runbook Snippet from a Vendor’s Device
BUSINESS ALARM ROOT CAUSE DIAGNOSTIC PROCESS

PKT-Eline Burst Traffic Insufficient cache 1. check whether BE queue drops packets from performance statistics in ports;
2. check if RTN uses the board with smallest cache

Excessive burst for host devices 1. check whether BE queue drops packets from performance statistics in ports;
2. check if RTN uses the board with largest cache

ECS
(200+)

OBS
(200+)

BMS
(200+)

VPC
(200+)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

1~10 11~20 21~30 31~40 >40

(a) The Number and the Size of Workflows
that Operators Need to Orchestrate by Hand

<3 months
(15%)

<1 year
(22%)

1-5 years
(37%)

>5 years
(26%)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

5min 5~30min 30min~2h >2h

(b) The Debugging Time with Regard to the
Experience of Operators

Cause %
problem not defined by workflow 14
implementing the workflow on the

specific platform incorrectly
21

insufficient support for the workflow
functionality on certain platforms

26

workflow is designed incorrectly 39

(c) The Proportion of Observed Rationales to
Blame for the Bugs

Fig. 3: Results of the Survey with 27 Network Operators

Lookup the list
of VMs in host

No VMs

Notification of
accomplishment

Hot migration
control

Single VM
migration

Loop
intervene

Loop wait
control

Wait 1 minute
for hot migration

Check if
finished

Notification of
failure

A
B

C

D

E

F
G

Fig. 4: Workflow: KVM Migra-
tion

Resolve VM
and execute

isolation
Notification of

accomplishment

Hot migration
control

Migration
execution

Loop
intervene

Loop wait
control

Wait 1 minute
for hot migration

Check if
finished

Notification of
failure

H

B

I

D
E

F

G
Power-off

once

Fail to Power
off

Fig. 5: Workflow: File System
Migration

(39%), and others are implementation specific or platform
constrained.

From the study, we find that the workflows have their own
complexity (e.g., a typical switch can have 1000+ error codes),
and inexperienced operators are more easily building faulty
workflows. The heavy workload, the tedious rule creation
process, and the possibly disastrous results together lead to
the slow progress of rule breeding in remediation system.
Workflow Recommendation System. To accelerate the work-
flow construction, workflow recommendation systems are pro-
posed, which aids the operator in incrementally enriching the
remediation database. When an operator decides to build a
remediation rule, the system would provide related workflows
to the operator as a reference, and the operator can reuse
existing workflows to build a new rule. And thus, the process
of building the database can be accelerated.

For example, Fig. 4 and Fig. 5 show two workflows (i.e.,
KVM migration and file system automatic migration) in a
production cloud. They both depict the core operations that
conduct the migration of the objects. If the recommendation
system can provide one rule as a reference to the operator to
build another one, the new rule can be built more quickly and
accurately with copy and paste.
Existing Practice (Expert System). A common practice for
large infrastructure providers is to build an expert system,
which stores existing remediation rules in raw format, and
after an operator inquires about a symptom, the raw data is
returned. An operator can ask the system “how to operate
when symptom X happens?”, and the system would use this

query to search the database and find and return rules whose
descriptions are semantically close to the query (e.g., keywords
matching). And it’s tedious for operators to look through
unstructured raw data.

Moreover, expert systems still need improvement in terms
of recommendation accuracy. Events and workflows are het-
erogeneous (e.g., KVM and FS migration) and different in
granularity (e.g., disconnection to the Internet and to the
campus gateway), and the workflow can hardly be exactly the
same. Thus, providing the raw workflow might be inaccurate.
It may miss critical actions (too small) or contain unnecessary
actions (too large).

C. Goal and Intuition

Our goal in this paper is to build a system that can
recommend workflows according to the operator’s query, and
it had better answer the query accurately and quickly. We
observe that existing workflows usually have common struc-
tures that can be reused when building new ones, which we
call atomic structures. If atomic structures can be extracted
from raw workflows, they would be more representative to
stand for a process (providing accuracy), and their small size
can accelerate the search process (providing quick response).
Looking into the examples in Fig. 4 and Fig. 5, we can find
such atomic structures (illustrated in the dashed boxes), which
are similar among workflows.

III. DESIGN

A. Overview

We design a system named WRS atop the remediation
database and used by the operator. WRS refines the raw
remediation rules into intermediate formats and provides in-
terfaces for operators to query. Fig. 6 shows the architecture
of WRS. Like an expert system, WRS is a computer-aided
tool for operators to query and get recommendations from
the existing remediation database, and the operator makes the
customization according to the recommendation to enrich the
database.

Remediation Database
�V\PSWRP��ZRUNƊRZ��GHVFULSWLRQ!

Mining Atomic Structures

Hierarchical
Retrieval

Keywords
Indexing

Expert
System

Auto
Completion

Recommend-
ation

New Event/Device

Operator

Solution

Fig. 6: Overview of WRS

Rename
A

B

D

C

F

E G

M

B N

F

E G

A
7UHH�P 7UHH�Q

Insert

Delete

Fig. 7: Tree Edit Distance

WRS formalizes the data model of a workflow. And then,
it extracts atomic structures among workflows, which are rep-
resentative to denote a set of actions (§III-B). WRS organizes
atomic structures in two ways, which accelerates the later
retrieval process: the first one would classify “similar” atomic
structures into groups and choose on a representative structure
to stand for the group, which would accelerate the structure
auto completion application (§III-C); the second one would
index atomic structures by keywords in their description,
which is used in workflow recommendation when an operator
uses the symptom description to search the database (§III-C).

B. Mining Atomic Structures

We first present the data model of a workflow. To mine
representative structures, we need a measure of the distance of
structures; we choose tree edit distance (TED) and customize
the measure according to the characteristics of workflow.
Finally, we present the algorithm of atomic structure mining.
Data Model of Workflow. According to the observation in
II, a workflow is represented in a tree structure; if not a tree
(e.g., Fig. 4 and Fig. 5), the inner circle would be broken by
concealing the reverse edge (an edge from a node far from
the root to a node near the root, depicted as the cross in the
figures) to be utilized later. Each node in the tree contains
a command/action to execute (to a device) and a description
to explain the purpose or the functionality of the command.
Each node may have directed edges to its children — if the
command of the node has no output (e.g., reboot), the node
cloud have one edge point to its child (executing the next
command); if the command of the node has an output (e.g.,
checking CPU), it may have one or multiple edges to its
children, with each describing one possible result of the output
and its corresponding next step (e.g., CPU high/medium/low).
Tree Edit Distance. To find common atomic structures, we
need to define the distance between structures. A commonly
used measure is the Tree Edit Distance (TED). We customize
the TED algorithm for workflows.

In TED algorithms, the node on trees has a label (e.g.,
characters in Fig. 4 and Fig. 5)); the distance of two nodes is
defined as 1 if their labels are different and otherwise 0. Fig. 7
shows an example to compute TED. To transform the tree P to
the tree Q, three operations are necessary, deleting node D to
tree P, inserting node M to tree Q, and renaming node N (on
Q) to C. With the cost of each operation (deleting, inserting,
and renaming) defined as one, the total cost of making P and
Q equal is three, which is also the distance between them.

Algorithm 1 SS-TED, Cited from [34]
Result: semantic similarity of tree pair
1: δ(φ, φ) = 0
2: δ(F, φ) = δ(F − v, φ) + cd(v)
3: δ(φ,G) = δ(φ,G− ω) + ci(ω)
4: if F is not a tree || G is not a tree then
5: δ(F,G) = min(δ(F−v,G)+cd(v), δ(F,G−w)+ci(w), δ(Fv, Gw)+

δ(F − Fv, G−Gw))
6: end if
7: if F is a tree && G is a tree then
8: δ(F,G) = min(δ(F − v,G) + cd(v), δ(F,G − w) + ci(w), δ(F −

v,G− w) + cr(v, w))
9: end if

The basic TED algorithm is shown in Algorithm 1. The
algorithm takes two forests (including trees) as input, recur-
sively searches all possibilities to make the two inputs equal,
and returns the minimum cost in the whole searching. If one
input is empty, the cost is the size of another input. If one input
is not a tree (a forest), the algorithm proceeds to search two
cases (and return the minimum cost) — remove one node from
one input (cost one) and search the remaining two forests or
take two trees out from both inputs and search the two trees
and the remaining two forests. If both inputs are trees, the
algorithm proceeds to search two cases — remove one node
from one tree (cost one) and rename both trees’ root nodes
(cost zero).
Customize the Distance Measure. The original TED algo-
rithm cannot be directly applied for workflow comparison, and
we make customization in two aspects. First, we break loops
by removing the minimum number of edges: WRS applies
width-first search to visit all edges and collect edges to form
a spanning tree; if an edge would cause loops to the spanning
tree, it is abandoned; otherwise, it is added to the spanning
tree.

Second, the measure of the distance between two nodes in
TED is either 0 or 1, indicating different labels or the same
label, which does not apply to the nodes in workflows. In a
workflow, a node represents a command to an entity, which
is not binary 0 and 1; it is quite possible that two different
entities can be applied with similar operations. For example,
the “Single VM migration” in Fig. 4 and the “Migration
execution” in Fig. 5 are two similar actions to VMs and File
Systems except for the objects, but their text description is not
completely the same. It is more reasonable to compare their
“semantic similarity”.

We transform workflow nodes into word embedding formats
and use their distance in the word embedding space as the
cost to change between each other. To achieve this, WRS
first integrates with a word2vec[20] neural network model and
feeds a node’s description (or command) into the model. The
model would output a sentence vector in the word embedding
space. For two nodes, their similarity is the cosine value of
their vectors, i.e., (~v1 · ~v2)/(|~v1| · |~v2|). And we define the
distance as 1− similarity.

In the WRS customized TED algorithm, the cost of insertion
and deletion is still one, but the cost of rename is the distance

cost(rename) = 1− similarity.

The overall customized TED algorithm is similar to Algo-
rithm 1 except cr defined as the “cost” above. We name the
customized algorithm as SS-TED.
Atomic Structure Mining Algorithm. WRS first enumerates
all subtrees of all workflows, and then compares the pairwise
distance between all pairs of subtrees. The pair whose distance
with SS-TED is within a threshold K is regarded as a similar
pair. All subtrees in similar pairs are recorded as atomic
structures, because each of them is at least representative for
a pair.

The distance threshold K needs to be tuned to a moderate
value. A small value of K would make the mining algorithm
return less number of atomic structures, but they are more
alike; a large value of K is vice versa. We would tune the
parameter in §V because both the number and the precision
of mined atomic structures are fundamental to top-level appli-
cations.

We further apply two optimizations in the mining algorithm
in WRS. First, it is possible that within a pair, one subtree is
the subtree of the other. WRS applies a filter to check the
relationship and keeps the larger subtree. Second, there are
a few cases where a workflow’s size is too large, causing
a large number of subtrees, which would cause the pairwise
comparison to be of low efficiency. Hence, we make two-
round mining to the workflow set. In the first round, we only
apply the mining algorithm to small workflows and get the
representative atomic structure, and then in the second round,
we remove the atomic structures from the large workflows
(if they contain any) and decompose the remaining part to
subtrees and apply the mining algorithm again to all subtrees
in both rounds. We then merge atomic structures as the first
step, if possible, to only keep the largest ones.
Example. In the example of Fig. 4 and Fig. 5, WRS would
enumerate all subtrees in both workflows and return pairs
whose similarity is larger than a threshold. WRS would return
atomic structures such as E-F-G, B-C(I)-D in both workflows.

The dashed box is the largest subtree, and the distance
of that in both workflows is computed as follows. Among
all node pairs, A and C need to be renamed. The semantic
similarity of A and H, C and I on both workflows are
0.52, 0.73 respectively, so the costs are 0.48, 0.27. Thus,
the distance between the two structures in both workflows is
0.48+0.27=0.75.

Complexity. Assume there are N workflows, and each
workflow has M nodes. Each workflow would generate O(M)
subtrees. The clustering algorithm needs pairwise comparison,
causing O(M2N2) time complexity in total.

Optimization: Parallelization. The mining algorithm can
be easily parallelized because the comparison of each pair
is independent on that of other pairs. In parallelized mining,
WRS first generates all comparison pairs and put them in
a queue, and each thread iteratively fetches a pair from the
queue, makes the comparison, and puts the result into the final
aggregated records.

Optimization: Incrementally Mining New Workflows.
When a new workflow is added to the database, WRS would

TABLE II: An Example of Atomic Structure Recommendation

Workflow Description of workflow Atomic Structure affiliation

F Keyword 1,2,3 Structure A, B, C
G Keyword 1,3 Structure A, B
H Keyword 1,2 Structure A, C
.

X Description of new workflow A? B? C?

generate all its subtrees and compare them with existing
subtrees to find similar pairs, which would be incremen-
tally recorded as atomic structures. The time complexity is
O(M2N).

C. Organizing Atomic Structures

Each tree would output one or more atomic structures, and
the total number of atomic structures could be large. Storing
the atomic structures linearly is not friendly for frequent
retrieval. Thus, we build two data structures to organize the
atomic structures.
Atomic Structures Hierarchy. In a naïve design, all atomic
structures are stored sequentially in the database. And when
an operator inputs a (partial) workflow to find a similar
structure, all atomic structures need to be compared with
the query sequentially to find and return the closest ones.
This sequential comparison is substantially time-consuming,
violating the requirement of fast response in a recommendation
system.

WRS organizes atomic structures in a two-level hierarchy,
which can accelerate the retrieval process. WRS first clusters
atomic structures into a few classes,1 and choose one structure
within a class that has the minimum overall distance to all
other structures in the same class. We name that structure as
the “representative structure” of the class. Then all atomic
structures are organized with the “representative structures”
in the first level and all structures in the same class as their
children in the second level. (Fig.8)

During the atomic structure retrieval, the input workflow is
compared with the representative structures first with a looser
threshold K to identify its class, and then compared with all
atomic structures within the class to identify and return the
closest ones.
Keyword Indexing for Atomic Structure. WRS associates
the keywords in a rule’s description with its atomic structures,
which supports the query interface with keywords. First, WRS
computes TF-IDF[40] of each word in all rules’ descriptions.
And the words with a high score are selected as keywords.

And then, for each rule, WRS associates its keywords with
its atomic structures as tuples using product. For the example
in TABLE II, workflow H would create tuples of <1, A>, <1,
C>, <2, A>, and <2, C>.

Thirdly, all tuples of all rules are put together and com-
pressed as 3-tuples <keyword, atomic_struct, count>, where
the count is the number of the appearance of <keyword,

1DBSCAN computes pairwise distance and iteratively merges nodes who
are close enough into one class. It has a parameter to decide whether two data
points are “close” enough, but it does not need to set the number of clusters
in advance.

1st level

2rd level

Fig. 8: Hierarchical Pattern Retrieval

$WRPLF�6WUXFWXUH�X

Auto Completion

sub-structure a sub-structure
b similar to a

([LVWLQJ�:RUNƊRZ�F :RUNƊRZ�G to Complete

Structure X’

Fig. 9: Workflow Auto Completion

���6XJJHVWHG�VWUXFWXUH�
$�ZLWK�VXSSRUW��

���6XJJHVWHG�VWUXFWXUH�
&�ZLWK�VXSSRUW��

��
�.H\ZRUG���6WUXFWXUH����6XSSRUW
�NH\ZRUG���������$��������������
�NH\ZRUG���������&��������������
�ŏ������������������ŏ������������ŏ
�NH\ZRUG��������%���������������
�ŏ������������������ŏ������������ŏ�
�NH\ZRUG��������&��������������
�NH\ZRUG��������'��������������
�ŏ������������������ŏ������������ŏ

Description of a New Workflow

ŏŏ

4XHU\
4XHU\

$WRPLF�6WUXFWXUH�,QGH[LQJ�7DEOH

ŏŏ

.H\ZRUG�([WUDFWLRQ

5HFRPPHQG

Keyword3Keyword 1

Fig. 10: Structure Recommendation

atomic_struct> among all tuples. The count is also called the
“support degree” of the pair of keywords and atomic_struct.

Finally, the searching index is built on keywords to find each
tuple. In the actual implementation, we sort 3-tuples first by
keywords (alphabet) and then by support degree (descending
order). The example in TABLE II is summarized as the index
in Fig. 10, e.g., <keyword 1, struct A, 7>.

When the query interface StructIndex() is called, the
input word is searched in the indexing system to find the
matching keywords, and the top few tuples (its workflow) of
the keyword are returned.

D. Two Applications

WRS supports two applications to aid operators in building
remediation rules — workflow auto completion and workflow
recommendation.

Workflow Auto Completion. When an operator is in the
progress of writing a workflow, WRS would detect the current
node (i.e., the node has the cursor focus or the last edited
node). All the subtrees containing the current node are fetched
and used to search in the retrieval system.

First, for each subtree in the current workflow, WRS com-
pares it with all level-1 representative atomic structures. Since
the current workflow (as well as its subtrees) is not complete,
when comparing a subtree (assuming size N) with an atomic
structure, WRS first enumerates all subtrees of the atomic
structure that contains the root node and is of size N ; and WRS
then compares the current workflow’s subtrees with the atomic
structure’s subtrees to find the similar structures (smaller than
the threshold K in §III-B).

Second, once similar level-1 atomic structures are found,
WRS further repeats the same process in its level-2 clusters.
Finally, the atomic structures which contains subtrees that are
closest to the workflow’s ones are returned to the operator as
references. (Fig. 9)

Atomic Structure Recommendation. With the atomic
structure indexing system, when an operator is creating a
remediation rule and writing the description, WRS would use
each word in the description to search the indexing system
and return the atomic structures whose keywords are contained
in the new rule’s description. The returned atomic structures
are displayed in descending order by their support degrees.
(Fig. 10)

TABLE III: Dataset Sources and Usage in Experiments

Dataset Number of Workflows Experiment
Model 1 115

Training Set (76.6%)
Model 2 226
Model 3 184
Model 4 161
Model 5 180
Model 6 265 Test Set (23.4%)

IV. IMPLEMENTATION

We implement WRS in Java. The TED algorithm is adopted
from APTED[35], [36], and we customize the similarity com-
putation part. The semantic similarity measurement algorithm
is implemented based on word2vec[20]. The remediation rules,
including the workflows, are implemented in the format of
JSON. Other parts in WRS, including atomic structure mining,
hierarchical retrieval, and keyword indexing, are implemented
in JAVA, which contains around 1500 lines of code.

Extra Refinement in Deployment. In production net-
work, we integrate WRS with a remediation system built
on StackStorm[8]. WRS is a computer-aided system, which
gives recommendations to the operator. It may provide false
positives, i.e., recommending an atomic structure that is not
useful. So we also allow the operator to mark a recommended
atomic structure as “unuseful”, like thumb up or thumb down
in social networks. “Unuseful” structures would be put to a
lower rank in the future recommendation.

V. EVALUATION

A. Experiment Settings

Dataset. We formalize the remediation rules from mainte-
nance manual of switches or routers, which are manufactured
by a device vendor and prevalently deployed in the cloud. The
size of the dataset is shown in TABLE III. There are 1131
workflows in total, and we separate them into two classes in
the evaluation — all workflows from Model 1-5 (76.6%) are
used for training, and those from Model 6 (23.4%) are used
for the test.

Metrics. In all experiments, we measure the execution
time to evaluate the algorithm’s efficiency. In atomic structure
mining, we ask the cloud operators to validate whether the
algorithm output is truly an atomic structure and define the
precision as the ratio of operator-validated ones over all
the algorithm output ones. In the two applications, we use
the training set to build WRS’s database and use the two

2 4 6 8 10
Threshold K

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on Precision
Number

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r

Fig. 11: Number and Precision of Atomic
Structures, Varying the Threshold

0 10 20 30 40 50 60 70
Size

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Atomic structure
Workflow

Fig. 12: CDF of the Size of Workflows and
the Atomic Structures

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Percentage

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Fig. 13: Percentage of Nodes in Atomic
Structure over Nodes in Workflow

applications to recommend structures for Model 6 (the test
set). The TED distance between the recommendation and the
ground truth (in the test set of Model 6) measures the accuracy.

Environment. All experiments are conducted on a work-
station with 3.1 GHz Quad-Core Intel Core i7 and 16 GB
memory.

Parameter Tuning. The similarity threshold to identify
whether two trees are similar is a key parameter, i.e., K
in §III-B. Fig. 11 shows the number and the precision of
atomic structures that are mined with various threshold. We
can observe that a larger threshold would lead to more atomic
structures to be found, but the precision (that they are really
atomic structures) would be less. We observe that when K is
3, the number of workflows increases rapidly to a moderately
high value (158) and the precision is kept at a reasonably high
level (0.85). Thus, we choose K empirically to be 3 in our
experiments.

B. Offline Atomic Structure Mining

Results. The mining algorithm outputs 134 atomic struc-
tures with the dataset, which covers 34%, 32%, 20%, 22%,
29% of workflows for device Model 1 to 5. This result
validates the existence of representative atomic structures in
the operation of devices of the same type. While the coverage
is not 100%, it can still save manual workload for operators.
With larger datasets, the coverage can be improved.

Fig.12 shows the CDF of the size of workflows and the
atomic structures. The workflow follows a long-tail distribu-
tion. The size of workflows varies from 6 to 70 nodes with a
median size 8, and that of atomic structures from 5 to 12 with
a median of 6.

For each workflow with atomic structure, we compute the
percentage of the nodes in atomic structures among the whole
workflow’s nodes. And we draw the CDF of the percentage in
Fig.13. The median value is 59%, which is the workload that
WRS can possibly be saved for the operator by using WRS.

Execution Time. We vary the number of workflows selected
from the training set in the atomic structure mining and
show the execution time in Fig. 14 and per-flow runtime
of incremental mining in Fig. 15. We have the following
observations. First, the mining time increases quadratically
with the number of workflows, which matches the theoretically
time complexity O(M2N2). Second, with the parallelization
of 4 CPU cores, the computation time is reduced to 1/4 of the
single thread mode. Third, the time to incrementally mine a

workflow is proportional to the number of existing workflows.
Considering that the mining process is offline, the execution
time is practical for WRS to be applied the first time to a
production system — 74 seconds for a remediation database
with 226 rules.
C. Two Online Applications

The experiments in this subsection are conducted on the
mining results of the full training set.

Accuracy. The two applications would recommend candi-
dates to the operators. Thus, we use “top-N” recommenda-
tion list to evaluate its accuracy. In the evaluation of auto
completion, we choose workflows with atomic structures from
the test set and then remove 1/3 nodes of the workflows. We
let the auto completion application recommend top-N atomic
structures for the existing part; if one structure in the recom-
mended list is similar (within the similarity threshold K), this
recommendation is considered as “accurate”. In the evaluation
of atomic structure recommendation, for each workflow in the
test set, the application would use its description to recommend
a list of atomic structures, and the “accuracy” is similarly
defined as that for the auto completion.

Fig.16 shows the accuracy in both applications with varying
N from 1 to 10. We do not recommend more than ten
atomic structures to operators because that would cause extra
complexity for the operator to make choices. We have the
following observations.

First, it is obvious that recommending more atomic struc-
tures (larger N) would be more likely to contain a useful
one in the list (more accurate). Second, the accuracy of both
applications increases with the length of the recommendation
list, and the accuracy is in a range that makes both applications
applicable to the production, i.e., 64% to 95% for auto
completion and 35% to 77% for recommendation. Third, in
keyword-based recommendation, the accuracy shows a slight
marginal increase when the N is larger than 5, and its ultimate
accuracy is 75%. Although this accuracy is acceptable for
practical deployment, there are still approaches to improve it
— the quality of keyword extraction (TF-IDF) depends closely
on the corpus. We encourage the operator to clarify and specify
the description of remediation rules to make it concise and
representative.

Execution Time. In auto completion, the algorithm needs
to search all atomic structures. It takes 15.6s to sequentially
search all atomic structures when the number is set to 120,
as Fig. 17 shows. The hierarchical retrieval system could

200 400 600 800 1000
Number of Workflows

101

102

103

AP
TE

D
Ru

nt
im

e
(s

)

Single Thread
Multi Thread

Fig. 14: Runtime of Structure
Mining, Tuning the Number of
Workflows

100 200 300 400 500 600 700 800
Number of Existing Workflows

4

5

6

7

8

9

AP
TE

D
Ru

nt
im

e
(s

)

Fig. 15: Runtime Using Incremen-
tal Mining, Tuning the Number of
Existing Workflows

1 2 3 4 5 6 7 8 9 10
Top-*

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Auto completion
Recommendation

Fig. 16: Accuracy of Auto Com-
pletion and Atomic Structure Rec-
ommendation

20 40 60 80 100 120
Number of atomic structures

0
2
4
6
8

10
12
14
16
18

Ex
ec

ut
io

n
Ti

m
e

(s
)

Sequential
Hierarchical
Recommedation

Fig. 17: Runtime of Auto Com-
pletion and Atomic Structure Rec-
ommendation

significantly reduce the search time to 3.5s. Fig. 17 also shows
the execution time of sequential search and hierarchical search
with varying atomic structures. The sequential search time
increases linearly with the number of atomic structures, and
the hierarchical retrieval increases sub-linearly (approximately
to be O(N0.5)).

For keyword-based recommendation, the execution time to
make a recommendation is on average 0.9s for production data
and 1.1s for synthesis data in Fig.17. It makes little difference
since we have indexed the recommendations with keywords.

In conclusion, compared to 10X minutes (in our survey)
used to build a new workflow manually, it is efficient to take
several seconds to complete or recommend atomic structures
with high accuracy.

D. Progress In Production

Currently, we deploy WRS in a cloud provider with 6
data centers and tens of thousands of machines. In the years
from 2018 to 2020, WRS supports building remediation rules,
whose number increases more than 15x from 23 initiatives.

VI. RELATED WORK

Remediation Systems. Remediation systems are intro-
duced into modern information infrastructure operation, e.g.,
FBAR[10] in Facebook, Naoru[31] in Dropbox, Winston[7]
in NetFlix, Azure Automation[1] in Microsoft, Mistral[2] in
OpenStack, and StackStorm[8]. They follow the architecture
in §II and focus on the compatibility with their target system
in operation. WRS not only provides the platform-independent
data representation but also recommends rules to populate the
remediation database.

Methodologies in Remediation. There are other method-
ologies to systematically remedy a system. For example,
Operator pattern[6] in Kubernetes uses low-level codes to
defined the operation workflow and further enable automation.
Trigger-action programming is popular in IoT fields to achieve
automation. [18], [21], [44] WRS’s abstraction is inspired by
the workflow in the maintenance book, which is more operator
readable.

A class of literature describes the fault localization or root
cause analysis in a specific system or scenario. [26], [24],
[43], [14], [46] use active probing or network traffic analysis
to determine the issues. These proactive methods can be
scheduled as workflows and deployed in remediation systems.
Therefore, these methods would directly benefit from WRS.

Other kind of methods are passive since they only monitor
the network without interactions and carry out analysis based
on collected data. [15], [22], [13], [39], [45], [27], [19],
[38], [25], [42] apply machine-learning methods and natural
language processing to identify the root cause from historical
KPIs and system logs. Some other works[29], [33], [16] mine
event correlations using alarms and logs data to locate the root
cause. These methods might perform better in certain sceneries
or datasets and can serve the remediation collaboratively with
WRS.

The remediation system is more suitable to incorporate the
ones with dependency graph, causality analysis, and diagnostic
rules, but does not suit learning-based well. Therefore, WRS
can help to build the diagnostic rules for the former solutions.

Tree Edit Distance. There are other tree edit algorithms,
e.g., TopDiff[37] and approximation[17]. Building SS-TED in
WRS based on them can improve the efficiency of the atomic
structure mining, which we leave as the future optimization to
WRS.

Semantic Similarity. Using word embedding to map a word
or sentence to a vector space and computing their distance
is a typical method to get the semantic similarity. There are
other options such as WMD[30] and supervised WMD[28] to
improve the accuracy of the similarity.

Datasets for Operation Research. [4], [5], [12] are typical
datasets for infrastructure operation research. But they are not
in the format to describe a “workflow” (e.g., time series in [4],
logs in [5], [12], tickets in [3]). WRS abstracts the operation
process as a tree structure, which is widely used in operation
(e.g., maintenance manual), and we release the dataset to the
academia for research.

VII. CONCLUSION

We built WRS, which is a recommendation system that
helps operators when they are building remediation rules.
WRS recommends structures from existing rules to operators
for the creation of new rules. WRS uses customized TED
algorithm to extract atomic structures in existing workflows
and organizes the atomic structures in a two-level hierarchy
and keyword indexing format. We built an auto completion
application based on the two-level hierarchy and a workflow
recommendation application based on keyword indexing. Our
implementation and evaluation shows that WRS’s approach
of extracting and organizing atomic structures in workflows
can significantly improve the accuracy and execution time of
workflow recommendation.

REFERENCES

[1] https://azure.microsoft.com/en-us/services/automation/.
[2] https://docs.openstack.org/mistral/latest/.
[3] https://github.com/karolzak/support-tickets-classification.
[4] https://github.com/khundman/telemanom.
[5] https://github.com/logpai/loghub.
[6] https://kubernetes.io/docs/concepts/extend-kubernetes/operator/.
[7] https://netflixtechblog.com/introducing-winston-event-driven-

diagnostic-and-remediation-platform-46ce39aa81cc.
[8] https://stackstorm.com.
[9] https://support.huawei.com/enterprise/en/index.html.

[10] https://www.facebook.com/notes/facebook-engineering/making-
facebook-self-healing/10150275248698920.

[11] https://www.rundeck.com/open-source.
[12] https://www.usenix.org/cfdr.
[13] Bhavish Aggarwal, Ranjita Bhagwan, Tathagata Das, Siddharth Eswaran,

Venkata N. Padmanabhan, and Geoffrey M. Voelker. Netprints: Diag-
nosing home network misconfigurations using shared knowledge. In
Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’09, page 349–364, USA, 2009.
USENIX Association.

[14] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo, and Geoff
Outhred. 007: Democratically finding the cause of packet drops.
In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 419–435, Renton, WA, April 2018.
USENIX Association.

[15] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff
Outhred. Taking the blame game out of data centers operations with
netpoirot. In Proceedings of the 2016 ACM SIGCOMM Conference,
SIGCOMM ’16, page 440–453, New York, NY, USA, 2016. Association
for Computing Machinery.

[16] Ranjita Bhagwan, Rahul Kumar, Ramachandran Ramjee, George Vargh-
ese, Surjyakanta Mohapatra, Hemanth Manoharan, and Piyush Shah.
Adtributor: Revenue debugging in advertising systems. In 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14), pages 43–55, Seattle, WA, April 2014. USENIX Association.

[17] Mahdi Boroujeni, Mohammad Ghodsi, MohammadTaghi Hajiaghayi,
and Saeed Seddighin. 1+epsilon approximation of tree edit distance
in quadratic time. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, page 709–720, New
York, NY, USA, 2019. Association for Computing Machinery.

[18] Ryan Chard, Rafael Vescovi, Ming Du, Hanyu Li, Kyle Chard, Steve
Tuecke, Narayanan Kasthuri, and Ian Foster. High-throughput neu-
roanatomy and trigger-action programming: A case study in research
automation. In Proceedings of the 1st International Workshop on
Autonomous Infrastructure for Science, AI-Science’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[19] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer.
Failure diagnosis using decision trees. In International Conference on
Autonomic Computing, 2004. Proceedings., pages 36–43, 2004.

[20] Kenneth Ward Church. Word2vec. Natural Language Engineering,
23(1):155–162, 2017.

[21] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. Em-
powering End Users in Debugging Trigger-Action Rules, page 1–13.
Association for Computing Machinery, New York, NY, USA, 2019.

[22] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, Konstantina
Papagiannaki, and Peter Steenkiste. Identifying the root cause of video
streaming issues on mobile devices. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’15, New York, NY, USA, 2015. Association for Computing
Machinery.

[23] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya Akella, and
Ratul Mahajan. Management plane analytics. In Proceedings of the
2015 Internet Measurement Conference, IMC ’15, page 395–408, New
York, NY, USA, 2015. Association for Computing Machinery.

[24] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. Pingmesh: A large-scale system for
data center network latency measurement and analysis. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM ’15, page 139–152, New York, NY, USA,
2015. Association for Computing Machinery.

[25] Jianglei Han, Ka Hian Goh, Aixin Sun, and Mohammad Akbari.
Towards effective extraction and linking of software mentions from
user-generated support tickets. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management,
CIKM ’18, page 2263–2271, New York, NY, USA, 2018. Association
for Computing Machinery.

[26] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maz-
ières, and Nick McKeown. I know what your packet did last hop: Using
packet histories to troubleshoot networks. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages
71–85, Seattle, WA, April 2014. USENIX Association.

[27] Jiyao Hu, Zhenyu Zhou, Xiaowei Yang, Jacob Malone, and Jonathan W
Williams. Cablemon: Improving the reliability of cable broadband net-
works via proactive network maintenance. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages
619–632, Santa Clara, CA, February 2020. USENIX Association.

[28] Gao Huang, Chuan Quo, Matt J Kusner, Yu Sun, Kilian Q Weinberger,
and Fei Sha. Supervised word mover’s distance. In Proceedings of
the 30th International Conference on Neural Information Processing
Systems, pages 4869–4877, 2016.

[29] S. Kobayashi, K. Otomo, K. Fukuda, and H. Esaki. Mining causality of
network events in log data. IEEE Transactions on Network and Service
Management, 15(1):53–67, 2018.

[30] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From
word embeddings to document distances. In International conference
on machine learning, pages 957–966. PMLR, 2015.

[31] David Mah. Bridging the safety gap from scripts to full auto-
remediation. Dublin, July 2016. USENIX Association.

[32] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. A
large scale study of data center network reliability. In Proceedings of the
Internet Measurement Conference 2018, pages 393–407. ACM, 2018.

[33] X. Nie, Y. Zhao, K. Sui, D. Pei, Y. Chen, and X. Qu. Mining causality
graph for automatic web-based service diagnosis. In 2016 IEEE 35th
International Performance Computing and Communications Conference
(IPCCC), pages 1–8, 2016.

[34] Mateusz Pawlik and Nikolaus Augsten. Rted: A robust algorithm for
the tree edit distance. Proc. VLDB Endow., 5(4):334–345, December
2011.

[35] Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree
edit distance. ACM Transactions on Database Systems (TODS), 40(1):3,
2015.

[36] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and
memory-efficient. Information Systems, 56:157 – 173, 2016.

[37] Mateusz Pawlik and Nikolaus Augsten. Minimal edit-based diffs for
large trees. In Proceedings of the 29th ACM International Confer-
ence on Information & Knowledge Management, CIKM ’20, page
1225–1234, New York, NY, USA, 2020. Association for Computing
Machinery.

[38] Aidi Pi, Wei Chen, Shaoqi Wang, and Xiaobo Zhou. Semantic-
aware workflow construction and analysis for distributed data analytics
systems. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing, HPDC ’19,
page 255–266, New York, NY, USA, 2019. Association for Computing
Machinery.

[39] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. Juggling the
jigsaw: Towards automated problem inference from network trouble
tickets. In Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13), pages
127–141, 2013.

[40] Juan Ramos et al. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine
learning, volume 242, pages 29–48. Citeseer, 2003.

[41] Joseph Severini, Radhika Niranjan Mysore, Vyas Sekar, Sujata Banerjee,
and Michael K. Reiter. The netivus manifesto: Making collaborative
network management easier for the rest of us. SIGCOMM Comput.
Commun. Rev., 51(2):10–17, May 2021.

[42] Vikrant Shimpi, Maitreya Natu, Vaishali Sadaphal, and Vaishali Kulka-
rni. Problem identification by mining trouble tickets. In Proceedings
of the 20th International Conference on Management of Data, pages
76–86, 2014.

[43] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu,
Karl Deng, Dongming Bi, and Dong Xiang. Netbouncer: Active device
and link failure localization in data center networks. In 16th USENIX

Symposium on Networked Systems Design and Implementation (NSDI
19), pages 599–614, Boston, MA, February 2019. USENIX Association.

[44] Valerie Zhao, Lefan Zhang, Bo Wang, Michael L. Littman, Shan Lu,
and Blase Ur. Understanding Trigger-Action Programs Through Novel
Visualizations of Program Differences. Association for Computing
Machinery, New York, NY, USA, 2021.

[45] Wubai Zhou, Wei Xue, Ramesh Baral, Qing Wang, Chunqiu Zeng, Tao
Li, Jian Xu, Zheng Liu, Larisa Shwartz, and Genady Ya. Grabarnik.
Star: A system for ticket analysis and resolution. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’17, page 2181–2190, New York, NY, USA,
2017. Association for Computing Machinery.

[46] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul
Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al.
Packet-level telemetry in large datacenter networks. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 479–491, 2015.

