
NFD: Using Behavior Models to Develop Cross-Platform NFs
Hongyi Huang, Wenfei Wu

Tsinghua University

CCS CONCEPTS
• Networks→ Middle boxes / network appliances.

KEYWORDS
Network Function(NF), NF Abstraction, Cross Platform

ACM Reference Format:
Hongyi Huang, Wenfei Wu. 2019. NFD: Using Behavior Models to Develop
Cross-Platform NFs. In SIGCOMM ’19: ACM SIGCOMM 2019 Conference
(SIGCOMM Posters and Demos ’19), August 19–23, 2019, Beijing, China. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3342280.3342342

1 INTRODUCTION
With the capability to enhance network performance and security,
the ecosystem of network function virtualization (NFV) has gradu-
ally matured over the past few years. Various network users (e.g.,
cloud tenants or enterprise network users) have requirements in
network flow processing (e.g., filtering, caching, load balancing);
network operators (e.g., cloud providers and enterprise network ad-
min) would set up network runtime environments1 (e.g., AWS Nitro,
Azure VFP[3], OpenNF[5], Metron[7], ResQ[13] and CHC[8]), and
there are NF vendors who deliver software network functions (NFs,
a.k.a. middleboxes). These NF vendors could be traditional network
device vendors like CISCO and Juniper or software companies like
Microsoft and Oracle.

We define that an NF’s logic consists of flow processing logic
and environmental adaptation logic. While StatelessNF[6] prefers
detaching state layer from NF logic, we propose this for the sake of
cross-platform property. Throughout this paper, flow processing
logic represents general functionalities of NFs without deployed
infrastructure involved; environmental adaptation logic refers to
pieces of codes in order to integrate NFs with either software or
hardware environments. For NF vendors, two further questions
may be proposed in NF development. (1) “Can we get an NF with-
/without a feature X in flow processing?”. For example, can a load
balancer support blacklisting? If an IDS is configured to filter traffic
by IP header only, can the TCP processing logic be removed (for
the purpose of performance)? (2)“Can the NF be deployed in the
environment Y?” For example, how does an IDS support SGX? How
can a firewall be accelerated by GPU?

1“Platform” and “environment” are inter-changeable in this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342342

Referring to current progress in NF development, most efforts
are put in building NF programming abstractions[4, 10, 11], which
improves programming NF flow processing logic. But environment
adaptation is often neglected, and NFs are often tightly coupled
with one specific runtime environment. For NF vendors, they would
face the difficulty in rapidly releasing an NF product to fragmented
market with diverse runtime network environments.

NF	Vendor Network	OperatorPlatform	Provider

NF Executables

Runtime
Environment

NF Compiler

Environment-
specific	

Extensions
NF	Models

Figure 1: NFD overview.

We propose a new NF development framework named NFD. NFD
consists of an NF abstraction layer to develop platform-independent
behavior models and a compiler to adapt NFmodels to specific runtime
environments. In practice, NF vendors develop platform-agnostic NF
models on the NF abstraction layer, and platform providers2 build
compiler extensions; by enabling an extension in the compiler, the
platform specific enhancement would be applied to NFs, leaving out
the trouble in integrating environmental logic with each individual
NF (Figure 1). Thus, NF vendors can build NFs that are “written
once and run anywhere”.

2 DESIGN
NF Behavior Models.We inherit and extend existing SDN switch
andNFmodeling language[1–3, 9] and define a platform-independent
language in Figure 2. This language can express many commonly
used network programming abstractions (i.e., program elements
expressing NF processing semantics) including packet processing
abstraction, bytestream processing abstraction, state-processing
abstraction, timer-logic abstraction, and user-defined abstraction
which allows users to implement their own programming abstrac-
tions.

An NF behavior model is defined as an explicit and structured
organization of NF programming abstractions using NFD language.
For example, a Stateful Match-Action Table (SMAT) can represent a
large variety of NFs including firewall, NAT, load balancer, IDS, etc.
A SMAT consists of multiple entries, and each entry has four fields:
flow/state match and flow/state action. Each incoming packet is
matched entry by entry - if the packet header matches the flow-
match field and the NF internal states match the state-match field,
the flow-action field is applied to the packet (i.e., send, drop, modifi-
cation) and the state-action field is applied to NF states; if multiple
2They can be network operators who integrate various hardware/software in the
platform; or they can be NF vendors who would like to sell NFs to a new platform; or
they can be platform hardware/software vendors such as SGX, GPU, etc.

153

https://doi.org/10.1145/3342280.3342342
https://doi.org/10.1145/3342280.3342342

SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China Huang. et al.

Basic types and expression

value v ::= (0 |1)+
header field h ::= sip |dip |spor t |dpor t |proto |...

state s
expression e ::= v |h |s | ®e |Expr_Op(e1, e2, ...)

Predicates
flow predicate xf , yf ::= ϵ | ∗ |h = v |¬xf |xf ∧ yf |xf ∨ yf
state predicate xs , ys ::= ∗|Rel_Op(s, e) |¬xs |xs ∧ ys |xs ∨ ys
Policies
flow policy pf , qf ::= h := e |pf ;qf
state policy ps , qs ::= s := e |ps ;qs
Model

model model ::= stmts
statements stmts ::= stmt |stmt ; stmts
statement stmt ::= p |i f |loop

if statement i f ::= if (x) then stmts else stmts
loop statement loop ::= while(x) then stmts

SMAT (an example model)

entry entry ::= if (xf ∧ xs) then (pf ;ps) else ⊥
SMAT smat ::= entry |entry ; smat

Figure 2: NFD language for NF models.

Match Action
Flow State Flow State

Stateful
Firewall

Configuration: OK={r1, r2, ...}
f⊏−OK - f[output]:=IFACE seen:=seen∪{f}

f f∈seen f[output]:=IFACE -
f⊏−/ OK f<seen f[output]:=ϵ -

Figure 3: An example of NF models.

Program

Init

Match-Action
Table

Entry

Entry
Match

Action
Loop

Send

Receive

Entry

While

Body Loop

For Each Packet

ŏ

ŏ

Match

Action

Match

Action

Figure 4: Syntax tree of an NFD program.

entries match the packet and the current states, the first match ap-
plies. For example, a stateful Firewall can be expressed in Figure 3.

NFDCompiler.The basic compiler framework compiles amodel
to a program. Currently we use C/C++ as the target language. Dur-
ing the compilation, control flows (i.e., if and while) are kept as the
same in both NFD and C/C++. NFD specific programming abstrac-
tions such as flow/bytestream, states, and timers are implemented
as libraries to link with the compilation output program.

During the compilation from NF model to NF program, the com-
piler keeps the syntax tree of the NF program (Figure 4). The syntax
tree describes how the NF program is derived according to the
syntax of NFD language. For example, the root “program” can de-
rive the “init” block and the “loop” block; the “Match-Action Table”
block would derive multiple entries. In the syntax tree, all the non-
leaf nodes are symbols that can derive other symbols in the NFD

language, and all the leaf nodes are basic symbols, which are the
basic elements in NFD language, typically flow, state, operators,
and keywords (e.g., if, while).

NFD provides the following interfaces to the environmental
extension developer: (1) a syntax tree visitor, which could traverse
a syntax tree and allow the programmer to transform the structure
of the tree, (2) prototypes of all basic symbols, which allow the
programmer to replace the implementation of the leaf node in the
tree. We give three examples of using these interfaces to adapt an
NF to a specific environment.

(1) Replacing implementation of basic symbols. Basic symbols are
leaf nodes in a syntax tree, and the compiler would not translate
them to detailed implementation in target NF program (i.e., they are
function prototypes). Instead, the compiler would link the program
with external libraries which contain their implementation to NF
executables. NFD has its own default library to implement the
basic symbols, but platform providers could re-implement them
based on the function prototype. For example, we can use DPDK
I/O to replace current libpcap I/O; or we can use GPU accelerated
operator (e.g., Encrypt/Decrypt, or PatternMatch) to replace CPU-
based implementations.

(2) Adding new logic to the syntax tree. Adding new logic can
be implemented by traversing the syntax tree and inserting new
branches on the tree. For example, the behavior model describes
the data plane logic, while some platforms contain logic from net-
work control plane, in which case, an integration of both is needed.
Taking OpenNF[5] as an example, it requires each NF to have an
agent to communicate with the network controller, which can be
implemented by adding a piece of agent code as library and insert-
ing the agent execution right after the initialization (i.e., “init” in
Figure 4).

(3) Generating new configurations by traversing the tree. Some
platform integrations do not change the workflow in NFs, but they
collect extra information and generate platform specific configu-
rations. For example, recent solutions[12] propose to protect NF
sensitive states using Intel SGX. In NFD, this can be implemented by
traversing the syntax tree and recording all state variables, and gen-
erating an SGX configuration file which claims all these variables
sealed in SGX enclave.

3 PROGRESS AND PLAN
We have prototyped NFD. We developed 14 NFs, spanning security-
featured NFs (e.g., Firewall, heavy hitter detector, and flood de-
tector), LBs (layer-3 and layer-4), NAT, monitors, and rate lim-
iters. The basic compiler framework can generate NFs supporting
native Linux runtime environment (compatible with Linux Con-
tainer and KVM), and we also build compiler extensions to support
OpenNetVM[14], GPU acceleration, SGX protection, DPDK I/O
acceleration, and OpenNF management.

We have evaluation about NFs’ functionality and performance
(omitted here) and NFD-based NFs shows comparable processing
throughput with some de facto NFs. Our future plan includes enrich-
ing the language feature and discovering its semantic completeness,
supporting more environments, and building network management
framework (e.g., verification) based on NFD models.

154

NFD: Using Behavior Models to Develop Cross-Platform NFs SIGCOMM Posters and Demos ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and

D. Walker. Netkat: Semantic foundations for networks. In ACM SIGPLAN Notices,
volume 49, pages 113–126. ACM, 2014.

[2] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker. Snap: Stateful
network-wide abstractions for packet processing. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference, pages 29–43. ACM, 2016.

[3] D. Firestone. VFP: A virtual switch platform for host SDN in the public cloud. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pages 315–328, Boston, MA, 2017. USENIX Association.

[4] K. Gao, T. Nojima, and Y. R. Yang. Trident: toward a unified sdn programming
framework with automatic updates. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, pages 386–401. ACM, 2018.

[5] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella. Opennf: Enabling innovation in network function control. In
Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, 2014.

[6] M. Kablan, A. Alsudais, E. Keller, and F. Le. Stateless network functions: Break-
ing the tight coupling of state and processing. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), pages 97–112, 2017.

[7] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr. Metron: NFV
service chains at the true speed of the underlying hardware. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18), pages
171–186, Renton, WA, 2018. USENIX Association.

[8] J. Khalid and A. Akella. Correctness and performance for stateful chained net-
work functions. In 16th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 19), Boston, MA, 2019. USENIX Association.
[9] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark. Kinetic:

Verifiable dynamic network control. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 59–72, 2015.

[10] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and E. Chen.
Clicknp: Highly flexible and high performance network processing with recon-
figurable hardware. In Proceedings of the 2016 ACM SIGCOMM Conference, pages
1–14. ACM, 2016.

[11] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. Netbricks:
Taking the v out of nfv. In OSDI, pages 203–216, 2016.

[12] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-nfv: Securing nfv states by
using sgx. In Proceedings of the 2016 ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization, pages 45–48. ACM,
2016.

[13] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy, and
S. Shenker. Resq: Enabling slos in network function virtualization. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18), pages
283–297, 2018.

[14] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi, K. K. Ramakr-
ishnan, and T. Wood. Opennetvm: A platform for high performance network
service chains. In D. Han and D. Raz, editors, Proceedings of the ACM SIGCOMM
Workshop on Hot topics in Middleboxes and Network Function Virtualization, Hot-
Middlebox@SIGCOMM 2016, Florianopolis, Brazil, August, 2016, pages 26–31. ACM,
2016.

155

	1 Introduction
	2 Design
	3 Progress and Plan
	References

